Citation: | Shan Zhigang, Liao Zhexian, Dong Youkou, et al. 2021. Investigation of consequence of hydroplaning in submarine landslide [J]. Jourmal of Engineering Geology, 29(6): 1815-1822. doi: 10.13544/j.cnki.jeg.2021-0342 |
Coyne M J, Dollar J J. 2005. Shell pipeline's response and repairs after hurricane Ivan[C]//Proceedings of Offshore Technology Conference: 17734.
|
De Blasio F V, Engvik L, Harbitz C B, et al. 2004. Hydroplaning and submarine debris flows[J]. Journal of Geophysical Research, 109 (C1): 1-15.
|
de Vaucorbeil A, Nguyen V P. 2020. Modelling contacts with a total Lagrangian material point method[J]. Computer Methods in Applied Mechanics and Engineering, 373: 113503.
|
Dong Y, Grabe J. 2018. Large scale parallelisation of the material point method with multiple GPUs[J]. Computers and Geotechnics, 101 : 149-158. doi: 10.1016/j.compgeo.2018.04.001
|
Dong Y, Wang D, Randolph M F. 2015. A GPU parallel computing strategy for the material point method[J]. Computers and Geotechnics, 66 : 31-38. doi: 10.1016/j.compgeo.2015.01.009
|
Dong Y, Wang D, Randolph M. 2017a. Runout of submarine landslide simulated with material point method[J]. Journal of Hydrodynamics, 29 (3): 438-444. doi: 10.1016/S1001-6058(16)60754-0
|
Dong Y, Wang D, Randolph M. 2017b. Investigation of impact forces on pipeline by submarine landslide with material point method[J]. Ocean Engineering, 146 (1): 21-28. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0029801817305279&originContentFamily=serial&_origin=article&_ts=1506605749&md5=7c29c1dd9977410462bd8e453e6cef9c
|
Dong Y, Wang D, Randolph M. 2020a. Investigation of impact forces on mudmat by submarine landslide with material point method[J]. Applied Ocean Research, 146 : 21-28.
|
Dong Y, Wang D, Cui L. 2020b. Assessment of depth averaged method in analysing runout of submarine landslide[J]. Landslides, 17 : 543-555. doi: 10.1007/s10346-019-01297-2
|
Dong Y. 2020. Reseeding of particles in the material point method for soil-structure interactions[J]. Computers and Geotechnics, 127: 103716. doi: 10.1016/j.compgeo.2020.103716
|
Elverhøi A, Issler D, De Blasio F, et al. 2005. Emerging insights into the dynamics of submarine debris flows[J]. Natural Hazards and Earth System Sciences, 5 : 633-648. doi: 10.5194/nhess-5-633-2005
|
Fan N, Nian T K, Jiao H B, et al. 2019. Effect and mechanism of disaster reduction of pipelines with double-elliptic streamline contour against impact of submarine landslides[J]. Rock and Soil Mechanics, 40 (1): 413-420. http://www.researchgate.net/publication/332628117_Effect_and_mechanism_of_disaster_reduction_of_pipelines_with_double-elliptic_streamline_contour_against_impact_of_submarine_landslides
|
Fan N, Nian T K, Zhao W, et al. 2018. Rheological test and strength model of submarine mud flow[J]. Rock and Soil Mechanics, 39 (9): 3195-3202. http://search.cnki.net/down/default.aspx?filename=YTLX201809012&dbcode=CJFD&year=2018&dflag=pdfdown
|
Fan N, Sahdi F, Zhang W C, et al. 2021. Effect of pipeline-seabed gaps on vertical forces of a pipeline induced by the submarine slide impact[J]. Ocean Engineering, 221: 108506. doi: 10.1016/j.oceaneng.2020.108506
|
Feng B, Sun H L, Cai Y Q, et al. 2019. Experimental study of submarine landslide impact on offshore wind power piles[J]. The Ocean Engineering, 37 (6): 114-121. http://en.cnki.com.cn/Article_en/CJFDTotal-HYGC201906012.htm
|
Hampton M A, Lee H J, Locat J. 1996. Submarine landslides[J]. Geophysics, 34 (1): 33-59. doi: 10.1029/95RG03287
|
Harbitz C B, Parker G, Elverhøi A, et al. 2003. Hydroplaning of subaqueous debris flows and glide blocks: Analytical solutions and discussion[J]. Journal of Geophysical Research, 108(B7): 2349. doi: 10.1029/2001JB001454/pdf
|
Huang X, García M. 1997. A perturbation solution for Bingham-plastic mudflows[J]. Journal of Hydraulic Engineering, 123 (11): 986-994. doi: 10.1061/(ASCE)0733-9429(1997)123:11(986)
|
Huo Y D, Nian T K, Jiao H B, et al. 2019. Seismic stability of submarine clay slopes based on upper bound approach[J]. Journal of Engineering Geology, 27 (2): 408-414. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201902022.htm
|
Ilstad T, Elverhøi A, Issler D, et al. 2004a. Subaqueous debris flow behaviour and its dependence on the sand/clay ratio: A laboratory study using particle tracking[J]. Marine Geology, 213 : 415-438. doi: 10.1016/j.margeo.2004.10.017
|
Ilstad T, De Blasio F, Elverhøi A, et al. 2004b. On the frontal dynamics and morphology of submarine debris flows[J]. Marine Geology, 213 (1): 481-497. http://www.onacademic.com/detail/journal_1000034096220710_62b3.html
|
Imran J, Harff P, Parker G. 2001. A numerical model of submarine debris flow with graphical user interface[J]. Computers and Geosciences, 27 (6): 717-729. doi: 10.1016/S0098-3004(00)00124-2
|
Kvalstad T J, Andresen L, Forsberg C, et al. 2005. The Storegga Slide: Evaluation of triggering sources and slide mechanics[J]. Marine and Petroleum Geology, 22 (1): 245-256.
|
Lai X H, Ye Y C, Xie Q C. 2000. A study of the distribution and mechanism of subaqueous landslides in the tidal channel region of the northern inshore, Zhejiang[J]. Marine Geology & Quaternary Geology, 20 (2): 45-50. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ200002009.htm
|
Li C Y, Zhang W, Wu F D, et al. 2018. Run-out process simulation of submarine landslide using material point method[J]. Journal of Engineering Geology, 26 (S1): 114-119.
|
Liu D, Cui Y, Guo J, et al. 2020. Investigating the effects of clay/sand content on depositional mechanisms of submarine debris flows through physical and numerical modeling[J]. Landslides 17 (8): 1863-1880. doi: 10.1007/s10346-020-01387-6
|
Liu J, Tian J, Yi P. 2015. Impact forces of submarine landslides on offshore pipelines[J]. Ocean Engineering, 95 : 116-127. doi: 10.1016/j.oceaneng.2014.12.003
|
Ma J, Wang D, Randolph M F. 2014. A new contact algorithm in the material point method for geotechnical simulations[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 38 (11): 1197-1210. doi: 10.1002/nag.2266
|
Mohrig D, Ellis C, Parker G, et al. 1998. Hydroplaning of subaqueous debris flows[J]. Geological Society of America Bulletin, 110 (3): 387-394. doi: 10.1130/0016-7606(1998)110<0387:HOSDF>2.3.CO;2
|
Newman J N. 1977. Marine hydrodynamics[M]. Cambridge, Masschusset: MIT Press.
|
Nguyen V P, de Vaucorbeil A, Nguyen C T, et al. 2020. A generalized particle in cell method for explicit solid dynamics[J]. Computer Methods in Applied Mechanics and Engineering, 371: 113308. doi: 10.1016/j.cma.2020.113308
|
Nodine M C, Wright S G, Gilbert R B, et al. 2006. Mudslides during hurricane Ivan and an assessment of the potential for future mudslides in the Gulf of Mexico[R]. Phase I Project Report prepared for the Minerals Management Service Under the MMS/OTRC Cooperative Research Agreement 1345-01-04-CA, Task Order 39239, MMS Project Number 552.
|
Soga K, Alonso E, Yerro A, et al. 2016. Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method[J]. Géotechnique, 66 (3): 1-26.
|
Sun Z, Gan Y, Huang Z, et al. 2020. A local grid refinement scheme for B-spline material point method[J]. International Journal for Numerical Methods in Engineering, 373: 113503.
|
Wang L Z, Miao C Z. 2008. Pressure on submarine pipelines under slowly sliding mud flows[J]. Chinese Journal of Geotechnical Engineering, 30 (7): 982-987. http://www.cnki.com.cn/Article/CJFDTotal-YTGC200807008.htm
|
Wang L, Wu S G, Ling Q P, et al. 2016. Submarine slides and influencing factors in the continental shelf break area of the Pearl River Mouth Basin[J]. Marine Sciences, 40 (5): 131-141. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYKX201605018.htm
|
Wang Z T, Zhang Y, Yang Q, et al. 2019. Numerical analysis for impact of submarine landslides on pipelines[J]. Chinese Journal of Geotechnical Engineering, 41 (3): 567-573. http://www.sciencedirect.com/science/article/pii/S0141118718307557
|
Xie Q H, Xiu Z X, Liu L J, et al. 2016. Back calculation of submarine landslide identified in the northwest coast of Sumatra[J]. Engineering Mechanics, 33 (12): 241-256. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCLX201612029.htm
|
Xiu Z X, Liu L J, Li X S, et al. 2016. Slope stability analysis of submarine canyon area along pipeline route of Liwan3-1 gasfield[J]. Journal of Engineering Geology, 24 (4): 535-541. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201604008.htm
|
Yerro A, Alonso E E, Pinyol N M. 2016. Run-out of landslides in brittle soils[J]. Computers and Geotechnics, 80 : 427-439. doi: 10.1016/j.compgeo.2016.03.001
|
Yu B. 2007. Experimental study of the velocity of subaqueous non-hydroplaning debris flows[J]. Advances in Water Science, 18 (5): 641-647. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKXJ200705001.htm
|
Yuan W, Wang H, Zhang W, et al. 2021. Particle finite element method implementation for large deformation analysis using Abaqus[J]. Acta Geotechnica, 12 : 1-14. doi: 10.1007/s11440-020-01124-2
|
Zakeri A. 2009. Submarine debris flow impact on suspended(free-span) pipelines: Normal and longitudinal drag forces[J]. Ocean Engineering, 36(6-7): 489-499. doi: 10.1016/j.oceaneng.2009.01.018
|
Zhu C Q, Jia Y G, Zhang M S, et al. 2016. Surface sediment strength in bed-slope of northern South China Sea[J]. Journal of Engineering Geology, 24 (5): 863-870. http://www.researchgate.net/publication/309740477_Surface_sediment_strength_in_bed-slope_of_northern_South_China_Sea
|
范宁, 年廷凯, 焦厚滨, 等. 2019. 双椭流线型海底管线抵御滑坡冲击的减灾效果与降阻机制[J]. 岩土力学, 40 (1): 413-420. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901044.htm
|
范宁, 年廷凯, 赵维, 等. 2018. 海底泥流的流变试验及强度模型[J]. 岩土力学, 39 (9): 3195-3202. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201809012.htm
|
冯斌, 孙宏磊, 蔡袁强, 等. 2019. 海底滑坡对海洋单桩冲击力试验研究[J]. 海洋工程, 37 (6): 114-121. https://www.cnki.com.cn/Article/CJFDTOTAL-HYGC201906012.htm
|
霍沿东, 年廷凯, 焦厚滨, 等. 2019. 基于极限分析上限方法的海底斜坡地震稳定性[J]. 工程地质学报, 27 (2): 408-414. doi: 10.13544/j.cnki.jeg.2017-621
|
解秋红, 修宗祥, 刘乐军, 等. 2016. 苏门答腊岛西北海域大型海底滑坡过程反分析[J]. 工程力学, 33 (12): 241-256. doi: 10.6052/j.issn.1000-4750.2015.05.0376
|
来向华, 叶银灿, 谢钦春. 2000. 浙北近海潮汐通道地区水下滑坡分布及成因机制研究[J]. 海洋地质与第四纪地质, 20 (2): 45-50. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200002009.htm
|
厉成阳, 张巍, 吴方东, 等. 2018. 海底滑坡运动全过程的物质点法模拟[J]. 工程地质学报, 26 (S1): 114-119. doi: 10.13544/j.cnki.jeg.2018117
|
王磊, 吴时国, 李清平, 等. 2016. 珠江口盆地陆架坡折带海底滑坡及其影响因素[J]. 海洋科学, 40 (5): 131-141. https://www.cnki.com.cn/Article/CJFDTOTAL-HYKX201605018.htm
|
王立忠, 缪成章. 2008. 慢速滑动泥流对海底管道的作用力研究[J]. 岩土工程学报, 30 (7): 982-987. doi: 10.3321/j.issn:1000-4548.2008.07.006
|
王忠涛, 张宇, 杨庆, 等. 2019. 海底滑坡对管线冲击力的数值分析[J]. 岩土工程学报, 41 (3): 567-573. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201903024.htm
|
修宗祥, 刘乐军, 李西双, 等. 2016. 荔湾3-1气田管线路由海底峡谷段斜坡稳定性分析[J]. 工程地质学报, 24 (4): 535-541. doi: 10.13544/j.cnki.jeg.2016.04.007
|
余斌. 2007. 无水滑的水下泥石流运动速度的实验研究[J]. 水科学进展, 18 (5): 641-647. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ200705001.htm
|
朱超祁, 贾永刚, 张民生, 等. 2016. 南海北部陆坡表层沉积物强度特征研究[J]. 工程地质学报, 24 (5): 863-870. doi: 10.13544/j.cnki.jeg.2016.05.016
|