Volume 29 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
Shan Zhigang, Liao Zhexian, Dong Youkou, et al. 2021. Investigation of consequence of hydroplaning in submarine landslide [J]. Jourmal of Engineering Geology, 29(6): 1815-1822. doi: 10.13544/j.cnki.jeg.2021-0342
Citation: Shan Zhigang, Liao Zhexian, Dong Youkou, et al. 2021. Investigation of consequence of hydroplaning in submarine landslide [J]. Jourmal of Engineering Geology, 29(6): 1815-1822. doi: 10.13544/j.cnki.jeg.2021-0342


doi: 10.13544/j.cnki.jeg.2021-0342

the National Natural Science Foundation of China 51909248

  • Received Date: 2021-06-16
  • Rev Recd Date: 2021-09-23
  • Available Online: 2022-01-06
  • Publish Date: 2021-12-25
  • Submarine landslides are one of the most hazardous agents,through which vast volumes of sediments are transported across the slopes under very high velocities. Hydroplaning is attributed to be the main reason for the high mobility of the submarine landslide,in which complicated interactions between the sliding mass and the ambient water is involved. This paper investigates the consequences of the hydroplaning using a novel numerical tool,the material point method(MPM),simulating the runout process of a laboratory and a real case submarine landslide. Considering the mechanical properties on the sliding mass during the runout process,upper drag force,basal resistance,and resistance from the water cushion are imposed on the sliding mass. The obtained runout distances for the two scenarios agree well with the observations. Based on the further analysis of the mobility of the sliding masses,it is found that the hydroplaning effect significantly enhances the runout distance and maximum velocity.
  • loading
  • Coyne M J, Dollar J J. 2005. Shell pipeline's response and repairs after hurricane Ivan[C]//Proceedings of Offshore Technology Conference: 17734.
    De Blasio F V, Engvik L, Harbitz C B, et al. 2004. Hydroplaning and submarine debris flows[J]. Journal of Geophysical Research, 109 (C1): 1-15.
    de Vaucorbeil A, Nguyen V P. 2020. Modelling contacts with a total Lagrangian material point method[J]. Computer Methods in Applied Mechanics and Engineering, 373: 113503.
    Dong Y, Grabe J. 2018. Large scale parallelisation of the material point method with multiple GPUs[J]. Computers and Geotechnics, 101 : 149-158. doi: 10.1016/j.compgeo.2018.04.001
    Dong Y, Wang D, Randolph M F. 2015. A GPU parallel computing strategy for the material point method[J]. Computers and Geotechnics, 66 : 31-38. doi: 10.1016/j.compgeo.2015.01.009
    Dong Y, Wang D, Randolph M. 2017a. Runout of submarine landslide simulated with material point method[J]. Journal of Hydrodynamics, 29 (3): 438-444. doi: 10.1016/S1001-6058(16)60754-0
    Dong Y, Wang D, Randolph M. 2017b. Investigation of impact forces on pipeline by submarine landslide with material point method[J]. Ocean Engineering, 146 (1): 21-28. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0029801817305279&originContentFamily=serial&_origin=article&_ts=1506605749&md5=7c29c1dd9977410462bd8e453e6cef9c
    Dong Y, Wang D, Randolph M. 2020a. Investigation of impact forces on mudmat by submarine landslide with material point method[J]. Applied Ocean Research, 146 : 21-28.
    Dong Y, Wang D, Cui L. 2020b. Assessment of depth averaged method in analysing runout of submarine landslide[J]. Landslides, 17 : 543-555. doi: 10.1007/s10346-019-01297-2
    Dong Y. 2020. Reseeding of particles in the material point method for soil-structure interactions[J]. Computers and Geotechnics, 127: 103716. doi: 10.1016/j.compgeo.2020.103716
    Elverhøi A, Issler D, De Blasio F, et al. 2005. Emerging insights into the dynamics of submarine debris flows[J]. Natural Hazards and Earth System Sciences, 5 : 633-648. doi: 10.5194/nhess-5-633-2005
    Fan N, Nian T K, Jiao H B, et al. 2019. Effect and mechanism of disaster reduction of pipelines with double-elliptic streamline contour against impact of submarine landslides[J]. Rock and Soil Mechanics, 40 (1): 413-420. http://www.researchgate.net/publication/332628117_Effect_and_mechanism_of_disaster_reduction_of_pipelines_with_double-elliptic_streamline_contour_against_impact_of_submarine_landslides
    Fan N, Nian T K, Zhao W, et al. 2018. Rheological test and strength model of submarine mud flow[J]. Rock and Soil Mechanics, 39 (9): 3195-3202. http://search.cnki.net/down/default.aspx?filename=YTLX201809012&dbcode=CJFD&year=2018&dflag=pdfdown
    Fan N, Sahdi F, Zhang W C, et al. 2021. Effect of pipeline-seabed gaps on vertical forces of a pipeline induced by the submarine slide impact[J]. Ocean Engineering, 221: 108506. doi: 10.1016/j.oceaneng.2020.108506
    Feng B, Sun H L, Cai Y Q, et al. 2019. Experimental study of submarine landslide impact on offshore wind power piles[J]. The Ocean Engineering, 37 (6): 114-121. http://en.cnki.com.cn/Article_en/CJFDTotal-HYGC201906012.htm
    Hampton M A, Lee H J, Locat J. 1996. Submarine landslides[J]. Geophysics, 34 (1): 33-59. doi: 10.1029/95RG03287
    Harbitz C B, Parker G, Elverhøi A, et al. 2003. Hydroplaning of subaqueous debris flows and glide blocks: Analytical solutions and discussion[J]. Journal of Geophysical Research, 108(B7): 2349. doi: 10.1029/2001JB001454/pdf
    Huang X, García M. 1997. A perturbation solution for Bingham-plastic mudflows[J]. Journal of Hydraulic Engineering, 123 (11): 986-994. doi: 10.1061/(ASCE)0733-9429(1997)123:11(986)
    Huo Y D, Nian T K, Jiao H B, et al. 2019. Seismic stability of submarine clay slopes based on upper bound approach[J]. Journal of Engineering Geology, 27 (2): 408-414. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201902022.htm
    Ilstad T, Elverhøi A, Issler D, et al. 2004a. Subaqueous debris flow behaviour and its dependence on the sand/clay ratio: A laboratory study using particle tracking[J]. Marine Geology, 213 : 415-438. doi: 10.1016/j.margeo.2004.10.017
    Ilstad T, De Blasio F, Elverhøi A, et al. 2004b. On the frontal dynamics and morphology of submarine debris flows[J]. Marine Geology, 213 (1): 481-497. http://www.onacademic.com/detail/journal_1000034096220710_62b3.html
    Imran J, Harff P, Parker G. 2001. A numerical model of submarine debris flow with graphical user interface[J]. Computers and Geosciences, 27 (6): 717-729. doi: 10.1016/S0098-3004(00)00124-2
    Kvalstad T J, Andresen L, Forsberg C, et al. 2005. The Storegga Slide: Evaluation of triggering sources and slide mechanics[J]. Marine and Petroleum Geology, 22 (1): 245-256.
    Lai X H, Ye Y C, Xie Q C. 2000. A study of the distribution and mechanism of subaqueous landslides in the tidal channel region of the northern inshore, Zhejiang[J]. Marine Geology & Quaternary Geology, 20 (2): 45-50. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ200002009.htm
    Li C Y, Zhang W, Wu F D, et al. 2018. Run-out process simulation of submarine landslide using material point method[J]. Journal of Engineering Geology, 26 (S1): 114-119.
    Liu D, Cui Y, Guo J, et al. 2020. Investigating the effects of clay/sand content on depositional mechanisms of submarine debris flows through physical and numerical modeling[J]. Landslides 17 (8): 1863-1880. doi: 10.1007/s10346-020-01387-6
    Liu J, Tian J, Yi P. 2015. Impact forces of submarine landslides on offshore pipelines[J]. Ocean Engineering, 95 : 116-127. doi: 10.1016/j.oceaneng.2014.12.003
    Ma J, Wang D, Randolph M F. 2014. A new contact algorithm in the material point method for geotechnical simulations[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 38 (11): 1197-1210. doi: 10.1002/nag.2266
    Mohrig D, Ellis C, Parker G, et al. 1998. Hydroplaning of subaqueous debris flows[J]. Geological Society of America Bulletin, 110 (3): 387-394. doi: 10.1130/0016-7606(1998)110<0387:HOSDF>2.3.CO;2
    Newman J N. 1977. Marine hydrodynamics[M]. Cambridge, Masschusset: MIT Press.
    Nguyen V P, de Vaucorbeil A, Nguyen C T, et al. 2020. A generalized particle in cell method for explicit solid dynamics[J]. Computer Methods in Applied Mechanics and Engineering, 371: 113308. doi: 10.1016/j.cma.2020.113308
    Nodine M C, Wright S G, Gilbert R B, et al. 2006. Mudslides during hurricane Ivan and an assessment of the potential for future mudslides in the Gulf of Mexico[R]. Phase I Project Report prepared for the Minerals Management Service Under the MMS/OTRC Cooperative Research Agreement 1345-01-04-CA, Task Order 39239, MMS Project Number 552.
    Soga K, Alonso E, Yerro A, et al. 2016. Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method[J]. Géotechnique, 66 (3): 1-26.
    Sun Z, Gan Y, Huang Z, et al. 2020. A local grid refinement scheme for B-spline material point method[J]. International Journal for Numerical Methods in Engineering, 373: 113503.
    Wang L Z, Miao C Z. 2008. Pressure on submarine pipelines under slowly sliding mud flows[J]. Chinese Journal of Geotechnical Engineering, 30 (7): 982-987. http://www.cnki.com.cn/Article/CJFDTotal-YTGC200807008.htm
    Wang L, Wu S G, Ling Q P, et al. 2016. Submarine slides and influencing factors in the continental shelf break area of the Pearl River Mouth Basin[J]. Marine Sciences, 40 (5): 131-141. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYKX201605018.htm
    Wang Z T, Zhang Y, Yang Q, et al. 2019. Numerical analysis for impact of submarine landslides on pipelines[J]. Chinese Journal of Geotechnical Engineering, 41 (3): 567-573. http://www.sciencedirect.com/science/article/pii/S0141118718307557
    Xie Q H, Xiu Z X, Liu L J, et al. 2016. Back calculation of submarine landslide identified in the northwest coast of Sumatra[J]. Engineering Mechanics, 33 (12): 241-256. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCLX201612029.htm
    Xiu Z X, Liu L J, Li X S, et al. 2016. Slope stability analysis of submarine canyon area along pipeline route of Liwan3-1 gasfield[J]. Journal of Engineering Geology, 24 (4): 535-541. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201604008.htm
    Yerro A, Alonso E E, Pinyol N M. 2016. Run-out of landslides in brittle soils[J]. Computers and Geotechnics, 80 : 427-439. doi: 10.1016/j.compgeo.2016.03.001
    Yu B. 2007. Experimental study of the velocity of subaqueous non-hydroplaning debris flows[J]. Advances in Water Science, 18 (5): 641-647. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKXJ200705001.htm
    Yuan W, Wang H, Zhang W, et al. 2021. Particle finite element method implementation for large deformation analysis using Abaqus[J]. Acta Geotechnica, 12 : 1-14. doi: 10.1007/s11440-020-01124-2
    Zakeri A. 2009. Submarine debris flow impact on suspended(free-span) pipelines: Normal and longitudinal drag forces[J]. Ocean Engineering, 36(6-7): 489-499. doi: 10.1016/j.oceaneng.2009.01.018
    Zhu C Q, Jia Y G, Zhang M S, et al. 2016. Surface sediment strength in bed-slope of northern South China Sea[J]. Journal of Engineering Geology, 24 (5): 863-870. http://www.researchgate.net/publication/309740477_Surface_sediment_strength_in_bed-slope_of_northern_South_China_Sea
    范宁, 年廷凯, 焦厚滨, 等. 2019. 双椭流线型海底管线抵御滑坡冲击的减灾效果与降阻机制[J]. 岩土力学, 40 (1): 413-420. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901044.htm
    范宁, 年廷凯, 赵维, 等. 2018. 海底泥流的流变试验及强度模型[J]. 岩土力学, 39 (9): 3195-3202. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201809012.htm
    冯斌, 孙宏磊, 蔡袁强, 等. 2019. 海底滑坡对海洋单桩冲击力试验研究[J]. 海洋工程, 37 (6): 114-121. https://www.cnki.com.cn/Article/CJFDTOTAL-HYGC201906012.htm
    霍沿东, 年廷凯, 焦厚滨, 等. 2019. 基于极限分析上限方法的海底斜坡地震稳定性[J]. 工程地质学报, 27 (2): 408-414. doi: 10.13544/j.cnki.jeg.2017-621
    解秋红, 修宗祥, 刘乐军, 等. 2016. 苏门答腊岛西北海域大型海底滑坡过程反分析[J]. 工程力学, 33 (12): 241-256. doi: 10.6052/j.issn.1000-4750.2015.05.0376
    来向华, 叶银灿, 谢钦春. 2000. 浙北近海潮汐通道地区水下滑坡分布及成因机制研究[J]. 海洋地质与第四纪地质, 20 (2): 45-50. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200002009.htm
    厉成阳, 张巍, 吴方东, 等. 2018. 海底滑坡运动全过程的物质点法模拟[J]. 工程地质学报, 26 (S1): 114-119. doi: 10.13544/j.cnki.jeg.2018117
    王磊, 吴时国, 李清平, 等. 2016. 珠江口盆地陆架坡折带海底滑坡及其影响因素[J]. 海洋科学, 40 (5): 131-141. https://www.cnki.com.cn/Article/CJFDTOTAL-HYKX201605018.htm
    王立忠, 缪成章. 2008. 慢速滑动泥流对海底管道的作用力研究[J]. 岩土工程学报, 30 (7): 982-987. doi: 10.3321/j.issn:1000-4548.2008.07.006
    王忠涛, 张宇, 杨庆, 等. 2019. 海底滑坡对管线冲击力的数值分析[J]. 岩土工程学报, 41 (3): 567-573. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201903024.htm
    修宗祥, 刘乐军, 李西双, 等. 2016. 荔湾3-1气田管线路由海底峡谷段斜坡稳定性分析[J]. 工程地质学报, 24 (4): 535-541. doi: 10.13544/j.cnki.jeg.2016.04.007
    余斌. 2007. 无水滑的水下泥石流运动速度的实验研究[J]. 水科学进展, 18 (5): 641-647. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ200705001.htm
    朱超祁, 贾永刚, 张民生, 等. 2016. 南海北部陆坡表层沉积物强度特征研究[J]. 工程地质学报, 24 (5): 863-870. doi: 10.13544/j.cnki.jeg.2016.05.016
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article views (186) PDF downloads(67) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint