Citation: | Feng Chunjian, Liu Hanlu, Liu Jinkun, et al. 2021. Prediction method for contribution rate of wave-induced seabed transient liquefaction to resuspension based on deep learning [J].Journal of Engineering Geology, 29(6): 1788-1795. doi: 10.13544/j.cnki.jeg.2021-0423 |
Dey S,Ali S Z,Padhi E. 2018. Advances in analytical modeling of suspended sediment transport[J]. Journal of Hydro-environment Research,20 : 110-126. doi: 10.1016/j.jher.2018.02.004
|
Du X, Sun Y F, Song Y P, et al. 2020. Multilayer perception neural network for assessment and prediction of earthquake-induced sand liquefaction[J]. Journal of Engineering Geology, 28 (6): 1425-1432.
|
Goldstein E B, Coco G, Plant N G. 2019. A review of machine learning applications to coastal sediment transport and morphodynamics[J]. Earth-Science Reviews, 194 : 97-108. doi: 10.1016/j.earscirev.2019.04.022
|
Graves A, Jaitly N, Mohamed A R. 2013. Hybrid speech recognition with deep bidirectional LSTM[C]//Automatic speech Recognition and Understanding (ASRU), 2013 IEEE Workshop on IEEE. [S.L.]: [s.n.]
|
Green M O, Coco G. 2014. Review of wave-driven sediment resuspension and transport in estuaries[J]. Reviews of Geophysics, 52 (1): 77-117. doi: 10.1002/2013RG000437
|
Jeng D S. 2003. Wave-induced sea floor dynamics[J]. Applied Mechanics Reviews, 56(4): 407. doi: 10.1115/1.1577359
|
Hochreiter S, Schmidhuber J. 1997. Long short-term memory[J]. Neural Computation, 9 (8): 1735-1780. doi: 10.1162/neco.1997.9.8.1735
|
Huang C C, Chang M J, Lin G F, et al. 2021. Real-time forecasting of suspended sediment concentrations reservoirs by the optimal integration of multiple machine learning techniques[J]. Journal of Hydrology: Regional Studies, 34: 100804. doi: 10.1016/j.ejrh.2021.100804
|
Kaveh K, Kaveh H, Bui M D, et al. 2020. Long short-term memory for predicting daily suspended sediment concentration[J]. Engineering with Computers, 37 (1): 2013-2027.
|
Liu Y H, Fang R K, Sun Y C, et al. 2021. Machine learning based model for warning of regional landslide disasters[J]. Journal of Engineering Geology, 29 (1): 116-124. doi: 10.1088/1755-1315/783/1/012074
|
Maa P Y, Kwon J I. 2007. Using ADV for cohesive sediment settling velocity measurements[J]. Estuarine Coastal & Shelf Science, 73(1-2): 351-354. http://www.researchgate.net/profile/Jerome_Maa/publication/228907015_Using_ADV_for_cohesive_sediment_settling_velocity_measurements/links/56254e1b08ae4d9e5c4bb259.pdf
|
Maanen B V, Coco G, Bryan K R, et al. 2010. The use of artificial neural networks to analyze and predict alongshore sediment transport[J]. Copernicus Publications, 17 (5): 395-404. http://www.onacademic.com/detail/journal_1000040545937810_f6e5.html
|
Mohammad Z K, Amin M M, Meysam A, et al. 2020. On the complexities of sediment load modeling using integrative machine learning: Application of the great river of Loíza in Puerto Rico[J]. Journal of Hydrology(Amsterdam), 585: 124759.
|
Mohammad Z K, Özgür K, Jan A, et al. 2016. Evaluation of data driven models for river suspended sediment concentration modeling[J]. Journal of Hydrology, 535 : 457-472. doi: 10.1016/j.jhydrol.2016.02.012
|
Rumelhart D E, Hinton G E, Williams R J. 1986. Learning representations by back-propagating errors[J]. Nature, 323(6088): 533-536. doi: 10.1038/323533a0
|
Srivastava N, Hinton G, Krizhevsky A, et al. 2014. Dropout: A simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 15 (1): 1929-1958. http://faculty.dbmi.pitt.edu/day/Bioinf2132-advanced-Bayes-and-R/index.php?path=previousDocuments/Bioinf2132-documents-2016/2016-12-15/&download=JMLRdropout.pdf
|
Vapnik V, Golowich S E, Smola A. 1997. Support vector method for function approximation, regression estimation, and signal processing[J]. Advances in Neural Information Processing Systems, 9(2008): 281-287. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.41.3139&rep=rep1&type=pdf
|
Xu X B, Xu G H, Yang J J, et al. 2021. Field observation of the wave-induced pore pressure response in a silty soil seabed[J]. Geo-Marine Letters, 41(1): 13. doi: 10.1007/s00367-020-00680-6
|
Xue C. 1993. Historical changes in the Yellow River delta, China[J]. Marine Geology, 113(3-4): 321-330. doi: 10.1016/0025-3227(93)90025-Q
|
Yan H, Li S H, Wu L Z. 2019. Landslide displacement prediction based on multiple data-driven model methods[J]. Journal of Engineering Geology, 27 (2): 459-465. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201902028.htm
|
Zhang S T, Jia Y G, Wen M Z, et al. 2017. Vertical migration of fine-grained sediments from interior to surface of seabed driven by seepage flows-'sub-bottom sediment pump action'[J]. Journal of Ocean University of China, 16 (1): 15-24. doi: 10.1007/s11802-017-3042-0
|
Zhang S T, Jia Y G, Liu X L, et al. 2016. Feature and mechanism of sediment dynamic changing processes in the modern Yellow River delta[J]. Marine Geology and Quaternary Geology, 36 (6): 33-44. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ201606006.htm
|
Zhang S T, Jia Y G, Zhang Y Q, et al. 2018. In situ observations of wave pumping of sediments in the Yellow River Delta with a newly developed benthic chamber[J]. Marine Geophysical Research, 39 (4): 463-474. doi: 10.1007/s11001-018-9344-9
|
杜星, 孙永福, 宋玉鹏, 等. 2020. 基于MPL神经网络的地震作用下砂土液化评估及预测[J]. 工程地质学报, 28 (6): 1425-1432. doi: 10.13544/j.cnki.jeg.2019-321
|
刘艳辉, 方然可, 苏永超, 等. 2021. 基于机器学习的区域滑坡灾害预警模型研究[J]. 工程地质学报, 29 (1): 116-124. doi: 10.13544/j.cnki.jeg.2020-533
|
鄢好, 李绍红, 吴礼舟. 2019. 联合多种数据驱动建模方法的滑坡位移预测研究[J]. 工程地质学报, 27 (2): 459-465. doi: 10.13544/j.cnki.jeg.2017-485
|
杨作升. 1993. 埕岛油田勘探开发海洋环境[M]. 青岛: 青岛海洋大学出版社.
|
张少同, 贾永刚, 刘晓磊, 等. 2016. 现代黄河三角洲沉积物动态变化过程的特征与机理[J]. 海洋地质与第四纪地质, 36 (6): 33-44. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201606006.htm
|