Citation: | Yang Dehuan, Yan Mengqiu, Lu Di, et al. 2021. Introduction and application of hydro-mechanical united experiment apparatus for hydrate-bearing sediments[J].Journal of Engineering Geology, 29(6): 1722-1732. doi: 10.13544/j.cnki.jeg.2021-0466 |
Aoki K,Ogata Y,Jiang Y. 2004. Compression strength and deformation behaviour of methane hydrate specimen[J]. Journal of the Mining and Materials Processing Institute of Japan,120 (12): 645-652.
|
Deusner C, Gupta S, Xie X G, et al. 2019. Strain rate-dependent hardening-softening characteristics of gas hydrate-bearing sediments[J]. Geochemistry, Geophysics, Geosystems, 20 (11): 4885-4905. doi: 10.1029/2019GC008458
|
Ebinuma T, Kamata Y, Minagawa H, et al. 2005. Mechanical properties of sandy sediment containing methane hydrate[C]//Proceedings of The Fifth International Conference on Gas Hydrates. [S.L. ]: 958-961.
|
Ghiassian H, Grozic J. 2013. Strength behavior of methane hydrate bearing sand in undrained triaxial testing[J]. Marine and Petroleum Geology, 43 : 310-319. doi: 10.1016/j.marpetgeo.2013.01.007
|
Hyodo M, Nakata Y, Yoshimoto N, et al. 2005. Basic research on the mechanical behavior of methane hydrate-sediments mixture[J]. Soils and Foundations, 45 (1): 75-85. http://www.researchgate.net/publication/279937652_Basic_research_on_the_mechanical_behavior_of_methane_hydrate-sediments_mixture
|
Hyodo M, Yoneda J, Yoshimoto N, et al. 2013. Mechanical and dissociation properties of methane hydrate-bearing sand in deep seabed[J]. Soils and Foundations, 53 (2): 299-314. doi: 10.1016/j.sandf.2013.02.010
|
Kong L, Liu W Z, Yuan Q M, et al. 2019. Triaxial tests on gassy sandy soil under constant shear stress paths[J]. Rock and Soil Mechanics, 40 (9): 3319-3326.
|
Kumar A, Sakpal T, Roy S, et al. 2015. Methane hydrate formation in a test sediment of sand and clay at various levels of water saturation[J]. Canadian Journal of Chemistry, 93 (8): 874-881. doi: 10.1139/cjc-2014-0537
|
Lee J Y, Santamarina J C, Ruppel C. 2010. Volume change associated with formation and dissociation of hydrate in sediment[J]. Geochemistry Geophysics Geosystems, 11 (3): 1-13. http://www.researchgate.net/profile/J_Santamarina/publication/45795686_Volume_change_associated_with_formation_and_dissociation_of_hydrate_in_sediment/links/554752e10cf24107d3983611.pdf
|
Lei L, Seol Y, Choi J H, et al. 2019. Pore habit of methane hydrate and its evolution in sediment matrix-laboratory visualization with phase-contrast micro-CT[J]. Marine and Petroleum Geology, 104 : 451-467. doi: 10.1016/j.marpetgeo.2019.04.004
|
Li L D, Cheng Y Y, Sun X J, et al. 2012. Experimental sample preparation and mechanical properties study of hydrate bearing sediments[J]. Journal of China University of Petroleum, 36 (4): 97-101. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYDX201204020.htm
|
Li S D, Sun Y M, Chen W C, et al. 2019. Analyses of gas production methods and offshore production tests of natural gas hydrates[J]. Journal of Engineering Geology, 27 (1): 55-68. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201901007.htm
|
Li Y H, Song Y C, Liu W G, et al. 2012. Effects of temperature and strain rate on strength of hydrate sediment[J]. Natural Gas Exploration & Development, 35 (1): 50-53. http://www.cnki.com.cn/Article/CJFDTotal-TRKT201201012.htm
|
Li Y H, Song Y C, Yu F, et al. 2011. Effect of confining pressure on mechanical behavior of methane hydrate-bearing sediments[J]. Petroleum Exploration and Development, 38 (5): 637-640. doi: 10.1016/S1876-3804(11)60061-X
|
Li Y H. 2013. Study on strength and deformation behaviors of methane hydrate-bearing sediments[D]. Dalian: Dalian University of Technology.
|
Lijith K P, Malagar B R C, Singh D N. 2019. A comprehensive review on the geomechanical properties of gas hydrate bearing sediments[J]. Marine and Petroleum Geology, 104 : 270-285. doi: 10.1016/j.marpetgeo.2019.03.024
|
Liu C L, Li Y L, Sun J Y, et al. 2017. Gas hydrate production test: from experimental simulation to field practice[J]. Marine Geology & Quaternary Geology, 37 (5): 12-26. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ201705002.htm
|
Liu Z C, Wei H Z, Li P, et al. 2017. An easy and efficient way to evaluate mechanical properties of gas hydrate-bearing sediments: The direct shear test[J]. Journal of Petroleum Science and Engineering, 149 : 56-64. doi: 10.1016/j.petrol.2016.09.040
|
Luo T T, Li Y H, Madhusudhan B N, et al. 2020. Comparative analysis of the consolidation and shear behaviors of CH4 and CO2 hydrate-bearing silty sediments[J]. Journal of Natural Gas Science and Engineering, 75: 103157. doi: 10.1016/j.jngse.2020.103157
|
Madhusudhan B N, Clayton C R I, Priest J A, et al. 2019. The effects of hydrate on the strength and stiffness of some sands[J]. Journal of Geophysical Research: Solid Earth, 124 (1): 65-75. doi: 10.1029/2018JB015880
|
Masui A, Haneda H, Ogata Y, et al. 2005. Effects of methane hydrate formation on shear strength of synthetic methane hydrate sediments[C]//Internationa1 Society of Offshore and Polar Engineering, et al. Proceedings of the fifteenth internationa1 offshore and polar engineering conference: 1-5, 11.
|
Pinkert S. 2017. Rowe's stress-dilatancy theory for hydrate-bearing sand[J]. International Journal of Geomechanics, 17(1): 06016008. doi: 10.1061/(ASCE)GM.1943-5622.0000682
|
Priest J A, Hayley J L. 2019. Strength of laboratory synthesized hydrate-bearing sands and their relationship to natural hydrate-bearing sediments[J]. Journal of Geophysical Research: Solid Earth, 124 (12): 12556-12575. doi: 10.1029/2019JB018324
|
Shi Y H, Zhang X H, Lu X B, et al. 2015. Experimental study on the static mechanical properties of hydrate-bearing silty-clay in the China sea[J]. Chinese Journal of Theoretical and Applied Mechanics, 47 (3): 521-528. http://d.wanfangdata.com.cn/Periodical/lxxb201503016
|
Song Y C, Yu F, Li Y H, et al. 2010. Mechanical property of artificial methane hydrate under triaxial compression[J]. Journal of Natural Gas Chemistry, 19 (3): 246-250. doi: 10.1016/S1003-9953(09)60073-6
|
Song Y C, Zhu Y M, Liu W G, et al. 2014. Experimental research on the mechanical properties of methane hydrate-bearing sediments during hydrate dissociation[J]. Marine and Petroleum Geology, 51 : 70-78. doi: 10.1016/j.marpetgeo.2013.11.017
|
Sultan N, Cochonat P, Foucher J P, et al. 2004. Effect of gas hydrates melting on seafloor slope instability[J]. Marine Geology, 213 (1): 379-401.
|
Uchida T, Hirano T, Ebinuma T, et al. 1999. Raman spectroscopic determination of hydration number of methane hydrates[J]. Aiche Journal, 45 (12): 2641-2645. doi: 10.1002/aic.690451220
|
Wang S Y, Lu X B, Zhang X H. 2009. Advances in the laboratory apparatus and research on mechanical properties of gas hydrate sediment[J]. Journal of Experimental Mechanics, 24 (5): 413-420. http://www.oalib.com/paper/1412699
|
Wei C F, Yan R T, Tian H H, et al. 2020. Geotechnical problems in exploitation of natural gas hydrate: status and challenges[J]. Natural Gas Industry, 40 (8): 116-132.
|
Winters W J, Waite W F, Mason D H, et al. 2007. Methane gas hydrate effect on sediment acoustic and strength properties[J]. Journal of Petroleum Science and Engineering, 56(1-3): 127-135. doi: 10.1016/j.petrol.2006.02.003
|
Wu D M, Li G, Li X S, et al. 2017. Experimental investigation of permeability characteristics under different hydrate saturation[J]. Chemical Industry and Engineering Progress, 36 (8): 2916-2923. http://en.cnki.com.cn/Article_en/CJFDTotal-HGJZ201708024.htm
|
Yan R T, Wei C F, Wei H Z, et al. 2012. Effect of hydrate formation on mechanical strength of hydrate-bearing sand[J]. Chinese Journal of Geotechnical Engineering, 34 (7): 1234-1240. http://www.researchgate.net/publication/288349201_Effect_of_hydrate_formation_on_mechanical_strength_of_hydrate-bearing_sand
|
Yan R T, Zhao X Y, Yu M B, et al. 2018. Isotropic compression characteristics of calyey soil saturated by salty solution[J]. Rock and Soil Mechanics, 39 (1): 129-138. http://www.researchgate.net/publication/325169648_Isotropic_compression_characteristics_of_clayey_soil_saturated_by_salty_solution
|
Yang J, Hassanpouryouzband A, Tohidi B, et al. 2019. Gas hydrates in permafrost: Distinctive effect of gas hydrates and ice on the geomechanical properties of simulated hydrate-bearing permafrost sediments[J]. Journal of Geophysical Research: Solid Earth, 124 (3): 2551-2563. doi: 10.1029/2018JB016536
|
Ye J L, Qin X W, Xie W W, et al. 2020. The second natural gas hydrate production test in the South China Sea[J]. China Geology, 3 (2): 197-209. http://d.wanfangdata.com.cn/periodical/zgdz-e202002002
|
Yoneda J, Oshima M, Kida M, et al. 2019. Consolidation and hardening behavior of hydrate-bearing pressure-core sediments recovered from the Krishna-Godavari Basin, offshore India[J]. Marine and Petroleum Geology, 108 : 512-523. doi: 10.1016/j.marpetgeo.2018.09.021
|
Zhang X H, Luo D S, Lu X B, et al. 2018. Mechanical properties of gas hydrate-bearing sediments during hydrate dissociation[J]. Acta Mechanica Sinica, 34 (2): 266-274. doi: 10.1007/s10409-017-0699-y
|
Zhang X H, Wang S Y, Li Q P, et al. 2010. Experimental study of mechanical properties of gas hydrate deposits[J]. Rock and Soil Mechanics, 31 (10): 3069-3074. http://d.wanfangdata.com.cn/Periodical/ytlx201010007
|
Zhou J Z, Wei C F, Wei H Z, et al. 2020. Development and application of multi-functional triaxial test system for hydrate-bearing sediments[J]. Rock and Soil Mechanics, 41 (1): 342-352.
|
孔亮, 刘文卓, 袁庆盟, 等. 2019. 常剪应力路径下含气砂土的三轴试验[J]. 岩土力学, 40 (9): 3319-3326. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201909004.htm
|
李令东, 程远方, 孙晓杰, 等. 2012. 水合物沉积物试验岩样制备及力学性质研究[J]. 中国石油大学学报(自然科学版), 36 (4): 97-101. doi: 10.3969/j.issn.1673-5005.2012.04.018
|
李守定, 孙一鸣, 陈卫昌, 等. 2019. 天然气水合物开采方法及海域试采分析[J]. 工程地质学报, 27 (1): 55-68. doi: 10.13544/j.cnki.jeg.2019-065
|
李洋辉, 宋永臣, 刘卫国, 等. 2012. 温度和应变速率对水合物沉积物强度影响试验研究[J]. 天然气勘探与开发, 35 (1): 50-53. doi: 10.3969/j.issn.1673-3177.2012.01.011
|
李洋辉, 宋永臣, 于锋, 等. 2011. 围压对含水合物沉积物力学特性的影响[J]. 石油勘探与开发, 38 (5): 637-640. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201105020.htm
|
李洋辉. 2013. 天然气水合物沉积物强度及变形特性研究[D]. 大连: 大连理工大学.
|
刘昌岭, 李彦龙, 孙建业, 等. 2017. 天然气水合物试采: 从实验模拟到场地实施[J]. 海洋地质与第四纪地质, 37 (5): 12-26. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201705002.htm
|
石要红, 张旭辉, 鲁晓兵, 等. 2015. 南海水合物黏土沉积物力学特性试验模拟研究[J]. 力学学报, 47 (3): 521-528. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201503016.htm
|
王淑云, 鲁晓兵, 张旭辉. 2009. 水合物沉积物力学性质的实验装置和研究进展[J]. 实验力学, 24 (5): 413-420. https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX200905006.htm
|
韦昌富, 颜荣涛, 田慧会, 等. 2020. 天然气水合物开采的土力学问题: 现状与挑战[J]. 天然气工业, 40 (8): 116-132. doi: 10.3787/j.issn.1000-0976.2020.08.009
|
吴丹梅, 李刚, 李小森, 等. 2017. 不同水合物饱和度下渗透率变化特性的实验研究[J]. 化工进展, 36 (8): 2916-2923. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201708024.htm
|
颜荣涛, 韦昌富, 魏厚振, 等. 2012. 水合物形成对含水合物砂土强度影响[J]. 岩土工程学报, 34 (7): 1234-1240. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201207010.htm
|
颜荣涛, 赵续月, 于明波, 等. 2018. 盐溶液饱和黏土的等向压缩特性[J]. 岩土力学, 39 (1): 129-138. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201801017.htm
|
张旭辉, 王淑云, 李清平, 等. 2010. 天然气水合物沉积物力学性质的试验研究[J]. 岩土力学, 31 (10): 3069-3074. doi: 10.3969/j.issn.1000-7598.2010.10.007
|
周家作, 韦昌富, 魏厚振, 等. 2020. 多功能水合物沉积物三轴试验系统的研制与应用[J]. 岩土力学, 41 (1): 342-352. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202001040.htm
|