Volume 29 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
Cu Zhongde, Cuo Ximgsen, Zhao Wei, et al. 2021. Muli-probe in-situ lesting system and evaluation method for undrained shear strength of deep-seashallow sediments[J]. Journal of Engineering Geology, 29(6): 1949-1955. doi: 10.13544/j.cnki.jeg.2021-0658
Citation: Cu Zhongde, Cuo Ximgsen, Zhao Wei, et al. 2021. Muli-probe in-situ lesting system and evaluation method for undrained shear strength of deep-seashallow sediments[J]. Journal of Engineering Geology, 29(6): 1949-1955. doi: 10.13544/j.cnki.jeg.2021-0658

MULTI-PROBE IN-SITU TESTING SYSTEM AND EVALUATION METHOD FOR UNDRAINED SHEAR STRENGTH OF DEEP-SEA SHALLOW SEDI ̄MENTS

doi: 10.13544/j.cnki.jeg.2021-0658
Funds:

National Key Research and Development Plan 2018YFC0309200

the National Natural Science Foundation of China 51879036

Liaoning Revitalization Talents Program XLYC2002036

  • Received Date: 2021-09-30
  • Rev Recd Date: 2021-11-22
  • Available Online: 2022-01-06
  • Publish Date: 2021-12-25
  • Ocean engineering has moved towards the deep sea. But in-situ testing technology for undrained shear strength of deep sea shallow sediments is not yet mature. This paper develops a multi-probe in-situ test system that can evaluate the soil mechanical properties of deep-sea shallow sediments. It includes CPT, Ball Full-flow Penetrometer and VST to achieve a rapid, accurate and intelligent evaluation of the soil mechanical properties of deep-sea shallow sediments. Further the resistance coefficient of CPT is determined with CEL large-deformation numerical analysis method and the full-scale geotechnical model test, and the resistance coefficient of Ball Full-flow Penetrometer is given by the centrifugal model test. Then the undrained shear strength evaluation method of deep sea shallow sediments is improved. On this basis, the undrained shear strength test intervals suitable for each of the instruments are discussed. Results indicate that for the evaluation of the deep-sea shallow saturated soft clay undrained shear strength, the recommended penetration coefficients of CPT and Ball Full-flow Penetrometer are respectively 9.5 and 11.1.
  • loading
  • Chen Q, Shi Y H, Pan Y, et al. 2007. Downhole technology for submarine CPT and its equipment development[J]. The Ocean Engineering, 25 (4): 73-76. http://d.wanfangdata.com.cn/Periodical/hygc200704012
    Colreavy C, O′Loughlin C D, Randolph M F. 2016. Experience with a dual pore pressure element piezoball[J]. International Journal of Physical Modelling in Geotechnics, 16(3): 101-118. doi: 10.1680/jphmg.15.00011
    DeJong J T, Yafrate N J, DeGroot D J. 2011. Evaluation of undrained shear strength using full-flow penetrometers[J]. Journal of Geotechnical and Geoenvironmental Engineering, 137(1): 14-26. doi: 10.1061/(ASCE)GT.1943-5606.0000393
    Fan N, Zhao W, Nian T K, et al. 2017. A new full-flow penetrometer for strength of submarine mud flow[J]. Journal of Shanghai Jiaotong University, 51 (4): 456-467. http://www.researchgate.net/publication/318587638_A_New_Full-Flow_Penetrometer_for_Strength_Test_of_Submarine_Mud_Flow
    Guo S Z, Liu R. 2015. Application of cone penetration test in offshore engineering[J]. Chinese Journal of Geotechnical Engineering, 37 (S1): 207-211. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTGC2015S1040.htm
    Guo S Z, Liu R, Zhang X D. 2017. In-situ testing method for undrained shear strength in shallow soft clays[J]. Chinese Journal of Geotechnical Engineering, 41 (2): 303-310.
    Guo X S. 2021. Study on the susceptibility of submarine seismic landslide and landslide-pipeline interaction[D]. Dalian: Dalian University of Technology.
    Hu Y, Wang Y. 2020. Identification of subsurface soil stratification using cone penetration tests and Bayesian learning[J]. Journal of Engineering Geology, 28 (5): 966-972.
    Ji F D, Jia Y G, Liu X L, et al. 2016. In situ measurement of the engineering mechanical properties of seafloor sediment[J]. Marine Geology and Quaternary Geology, 36 (3): 191-200. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ201603025.htm
    Jiang Y Y. 2011. The study of cone penetration testing methods and the application in offshore engineering[D]. Tianjin: Tianjin University.
    Kelleher P J, Randolph M F. 2005. Seabed geotechnical characterisation with a ball penetrometer deployed from the portable remotely operated drill[C]//Proceedings of the 1st International Symposium on Frontiers in Offshore Geotechnics: 365-371.
    Li G S, Pan Y J, Meng X H. 2019. Comparative experimental analysis of physical and mechanical properties of saturated soft soil under different sampling methods[J]. Journal of Engineering Geology, 27 (3): 550-558. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201903012.htm
    Liu H Y. 2020. Study on in-situ shear force measurement and penetration system for seabed sediments[D]. Jinan: Shandong University.
    Liu R M, Yuan Q M, Kong L, et al. 2019. A constitutive model for methane hydrate-bearing sediments based on unified hardening parameters[J]. Journal of Engineering Geology, 27 (4): 811-818. http://www.zhangqiaokeyan.com/academic-journal-cn_journal-engineering-geology_thesis/0201272957753.html
    Liu Y, Zhu H Z, Chen G B, et al. 2017. Development and application of the PeneVector Seabed CPT System[C]//Proceedings of the 15th National Conference on Engineering Geophysical Prospecting and Geotechnical Engineering Testing.
    Low H E, Randolph M F, Lunne T, et al. 2011. Effect of soil characteristics on relative values of piezocone, T-bar and ball penetration resistances[J]. Gotechnique, 61 (8): 651-664. doi: 10.1680/geot.9.P.018
    Lu F C, Qu Y D, Liao M H. 2004. The development status and applications of in situ cone penetration test technology[J]. Ocean Technology, 23 (4): 32-36. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYJS200404008.htm
    Lunne T. 2010. The CPT in offshore soil investigations—A historic perspective[C]//2nd International Symposium on Lone Penetration Testing, 1: 43.
    Nguyen T D, Chung S G. 2015. Effect of shaft area on ball resistances in soft clays[J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 168 (2): 103-119. doi: 10.1680/geng.14.00023
    Nian T K, Fan N, Jiao H B, et al. 2018. Full-flow strength tests on the soft clay in the northern slope of the South China Sea[J]. Chinese Journal of Geotechnical Engineering, (4): 602-611. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTGC201804005.htm
    Peng P. 2018. Research on penetration mechanism and its application on offshore engineering[D]. Nanjing: Southeast University.
    Randolph M F, Hefer P A, Geise J M, et al. 1998. Improved seabed strenght profiling using T-bar penetrometer[C]//Offshore Site Investigation and Foundation Behaviour: New Frontiers-Proceedings of an International Conference.
    Rémai Z. 2013. Correlation of undrained shear strength and CPT resistance[J]. Periodica Polytechnica Civil Engineering, 57 (1): 39-44. doi: 10.3311/PPci.2140
    Sacchetto M, Trevisan A, Elmgren K, et al. 2004. CPTWD(Cone Penetration Test While Drilling) a new method for deep geotechnical surveys[C]//Proceeding of ISC-2 on Geotechnical and Geophysical Site Characterization, 1: 787.
    Standards Association of Australia. 1993. Geotechnical site investigations(AS 1726-1993)[S]. NSW, Australia: Standard Australia(Standards Association of Austalia).
    Tao K, Zhao J M, Xu X C. 2013. Influencing factors and countermeasures of sea cross-plate shear test[J]. China Water Transport, 13 (9): 329-330.
    The Professional Standards Compilation Group of People's Republic of China. 2002. Code for investigation of geotechnical engineering(GB 50021-2001)[S]. Beijing: China Construction Industry Press.
    Walker J, Yu H S. 2006. Adaptive finite element analysis of cone penetration in clay[J]. Acta Geotechnica, 1(1): 43-57. doi: 10.1007/s11440-006-0005-9
    Walker J, Yu H S. 2010. Anslysis of the cone penetration test in layered clay[J]. Geotechnique, 60(12): 939-948. doi: 10.1680/geot.7.00153
    Wang C, Yu Y J, Kou B B. 2017. Summary of marine in-situ testing methods[J]. Ocean Development and Management, 34 (1): 81-86. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HKGL201701016.htm
    Wang D, Bienen B, Nazem M, et al. 2015. Large deformation finite element analyses in gectechnical engineering[J]. Computers and Geotechnics, 65: 104-114. doi: 10.1016/j.compgeo.2014.12.005
    Wei D B, Yang Q, Xia J X. 2021. Factors influencing shear and its variation law[J]. Marine Geology Frontiers, 37 (8): 28-33.
    Wu H, Zhu H H, Zhou G Y, et al. 2020. Experimental study on distributed monitoring of soil shear displacement considering deformation compatibility[J]. Journal of Engineering Geology, 28 (4): 716-724.
    Yang Y, Liu S Y, Cai G J, et al. 2017. Review on penetration mechanism and application of Ball penetrometer in offshore engineering[J]. Journal of Engineering Geology, 25 (6): 1603-1609. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201706024.htm
    Yao S L, Zheng X Y. 2015. Introduction of offshore in-situ vane shear test[J]. Coastal Engineering, 34 (2): 67-73. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HAGC201502008.htm
    Zhang H, Jia Y G, Liu X L, et al. 2019. Progress in in-situ measurement of sediment mechanical properties for full ocean depth[J]. Marine Geology Frontiers, 35 (2): 4-12. http://en.cnki.com.cn/Article_en/CJFDTotal-HYDT201902001.htm
    Zhao W, Wang R R, Li Z Y, et al. 2013. Laboratory and centrifuge model tests study on full flow penetrometers[J]. Beifang Jiaotong, (6): 1-5. http://en.cnki.com.cn/Article_en/CJFDTOTAL-LNJT201306002.htm
    陈奇, 石要红, 潘毅, 等. 2007. 基于downhole工艺的海底静力触探及其设备研制[J]. 海洋工程, 25 (4): 73-76. doi: 10.3969/j.issn.1005-9865.2007.04.012
    范宁, 赵维, 年廷凯, 等. 2017. 一种测试海底泥流强度的新型全流动贯入仪[J]. 上海交通大学学报, 51 (4): 456-467. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201704012.htm
    郭绍曾, 刘润. 2015. 静力触探测试技术在海洋工程中的应用[J]. 岩土工程学报, 37 (S1): 207-211. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2015S1040.htm
    郭绍曾, 刘润, 张雪东. 2017. 浅表层软黏土不排水强度的原位测试方法[J]. 岩土工程学报, 41 (2): 303-310. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902009.htm
    郭兴森. 2021. 海底地震滑坡易发性与滑坡-管线相互作用研究[D]. 大连: 大连理工大学.
    胡越, 王宇. 2020. 静力触探识别场地土层分布的贝叶斯学习方法研究[J]. 工程地质学报, 28 (5): 966-972. doi: 10.13544/j.cnki.jeg.2020-263
    季福东, 贾永刚, 刘晓磊, 等. 2016. 海底沉积物工程力学性质原位测量方法[J]. 海洋地质与第四纪地质, 36 (3): 191-200. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201603025.htm
    蒋衍洋. 2011. 海上静力触探测试方法研究及工程应用[D]. 天津: 天津大学.
    李高山, 潘永坚, 孟叙华. 2019. 不同取样方法下饱和软土物理力学性状对比试验分析[J]. 工程地质学报, 27 (3): 550-558. doi: 10.13544/j.cnki.jeg.2018-103
    刘恒宇. 2020. 海底沉积物原位剪切力测量及贯入系统研究[D]. 济南: 山东大学.
    刘锐明, 袁庆盟, 孔亮, 等. 2019. 基于统一硬化参数的深海能源土本构模型[J]. 工程地质学报, 27 (4): 811-818. doi: 10.13544/j.cnki.jeg.2018-249
    刘雨, 祝汉柱, 陈贵标, 等. 2017. PeneVector海床式静力触探系统研发及工程应用[C]//第十五届全国工程物探与岩土工程测试学术大会论文集. 北京: [出版者不详].
    陆凤慈, 曲延大, 廖明辉. 2004. 海上静力触探(CPT)测试技术的发展现状和应用[J]. 海洋技术, 23 (4): 32-36. doi: 10.3969/j.issn.1003-2029.2004.04.008
    年廷凯, 范宁, 焦厚滨, 等. 2018. 南海北部陆坡软黏土全流动强度试验研究[J]. 岩土工程学报, (4): 602-611. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201804005.htm
    彭鹏. 2018. T型全流触探贯入仪作用机理及海洋软土工程应用研究[D]. 南京: 东南大学.
    陶凯, 赵家明, 徐绪程. 2013. 海上十字板剪切试验的影响因素及应对措施[J]. 中国水运(下半月), 13 (9): 329-330. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSUX201309158.htm
    王偲, 于彦江, 寇贝贝. 2017. 海洋原位试验方法综述[J]. 海洋开发与管理, 34 (1): 81-86. doi: 10.3969/j.issn.1005-9857.2017.01.016
    魏定邦, 杨强, 夏建新. 2021. 深海沉积物抗剪强度影响因素及其变化规律[J]. 海洋地质前沿, 37 (8): 28-33. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT202108005.htm
    吴涵, 朱鸿鹄, 周谷宇, 等. 2020. 考虑变形协调的土体剪切位移分布式测试研究[J]. 工程地质学报, 28 (4): 716-724. doi: 10.13544/j.cnki.jeg.2019-203
    杨岩, 刘松玉, 蔡国军, 等. 2017. 球型全流触探仪的机理研究及工程应用综述[J]. 工程地质学报, 25 (6): 1603-1609. doi: 10.13544/j.cnki.jeg.2017.06.024
    姚首龙, 郑喜耀. 2015. 海上原位十字板剪切试验方法介绍[J]. 海岸工程, 34 (2): 67-73. https://www.cnki.com.cn/Article/CJFDTOTAL-HAGC201502008.htm
    张红, 贾永刚, 刘晓磊, 等. 2019. 全海深海底沉积物力学特性原位测试技术[J]. 海洋地质前沿, 35 (2): 4-12. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201902001.htm
    赵维, 王冉冉, 李志阳, 等. 2013. 全流动贯入仪的室内和离心模型试验研究[J]. 北方交通, (6): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-LNJT201306002.htm
    中华人民共和国国家标准编写组. 2002. 岩土工程勘察规范(GB 50021-2001)[S]. 北京: 中国建筑工业出版社.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article views (205) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint