Citation: | Cu Zhongde, Cuo Ximgsen, Zhao Wei, et al. 2021. Muli-probe in-situ lesting system and evaluation method for undrained shear strength of deep-seashallow sediments[J]. Journal of Engineering Geology, 29(6): 1949-1955. doi: 10.13544/j.cnki.jeg.2021-0658 |
Chen Q, Shi Y H, Pan Y, et al. 2007. Downhole technology for submarine CPT and its equipment development[J]. The Ocean Engineering, 25 (4): 73-76. http://d.wanfangdata.com.cn/Periodical/hygc200704012
|
Colreavy C, O′Loughlin C D, Randolph M F. 2016. Experience with a dual pore pressure element piezoball[J]. International Journal of Physical Modelling in Geotechnics, 16(3): 101-118. doi: 10.1680/jphmg.15.00011
|
DeJong J T, Yafrate N J, DeGroot D J. 2011. Evaluation of undrained shear strength using full-flow penetrometers[J]. Journal of Geotechnical and Geoenvironmental Engineering, 137(1): 14-26. doi: 10.1061/(ASCE)GT.1943-5606.0000393
|
Fan N, Zhao W, Nian T K, et al. 2017. A new full-flow penetrometer for strength of submarine mud flow[J]. Journal of Shanghai Jiaotong University, 51 (4): 456-467. http://www.researchgate.net/publication/318587638_A_New_Full-Flow_Penetrometer_for_Strength_Test_of_Submarine_Mud_Flow
|
Guo S Z, Liu R. 2015. Application of cone penetration test in offshore engineering[J]. Chinese Journal of Geotechnical Engineering, 37 (S1): 207-211. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTGC2015S1040.htm
|
Guo S Z, Liu R, Zhang X D. 2017. In-situ testing method for undrained shear strength in shallow soft clays[J]. Chinese Journal of Geotechnical Engineering, 41 (2): 303-310.
|
Guo X S. 2021. Study on the susceptibility of submarine seismic landslide and landslide-pipeline interaction[D]. Dalian: Dalian University of Technology.
|
Hu Y, Wang Y. 2020. Identification of subsurface soil stratification using cone penetration tests and Bayesian learning[J]. Journal of Engineering Geology, 28 (5): 966-972.
|
Ji F D, Jia Y G, Liu X L, et al. 2016. In situ measurement of the engineering mechanical properties of seafloor sediment[J]. Marine Geology and Quaternary Geology, 36 (3): 191-200. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ201603025.htm
|
Jiang Y Y. 2011. The study of cone penetration testing methods and the application in offshore engineering[D]. Tianjin: Tianjin University.
|
Kelleher P J, Randolph M F. 2005. Seabed geotechnical characterisation with a ball penetrometer deployed from the portable remotely operated drill[C]//Proceedings of the 1st International Symposium on Frontiers in Offshore Geotechnics: 365-371.
|
Li G S, Pan Y J, Meng X H. 2019. Comparative experimental analysis of physical and mechanical properties of saturated soft soil under different sampling methods[J]. Journal of Engineering Geology, 27 (3): 550-558. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201903012.htm
|
Liu H Y. 2020. Study on in-situ shear force measurement and penetration system for seabed sediments[D]. Jinan: Shandong University.
|
Liu R M, Yuan Q M, Kong L, et al. 2019. A constitutive model for methane hydrate-bearing sediments based on unified hardening parameters[J]. Journal of Engineering Geology, 27 (4): 811-818. http://www.zhangqiaokeyan.com/academic-journal-cn_journal-engineering-geology_thesis/0201272957753.html
|
Liu Y, Zhu H Z, Chen G B, et al. 2017. Development and application of the PeneVector Seabed CPT System[C]//Proceedings of the 15th National Conference on Engineering Geophysical Prospecting and Geotechnical Engineering Testing.
|
Low H E, Randolph M F, Lunne T, et al. 2011. Effect of soil characteristics on relative values of piezocone, T-bar and ball penetration resistances[J]. Gotechnique, 61 (8): 651-664. doi: 10.1680/geot.9.P.018
|
Lu F C, Qu Y D, Liao M H. 2004. The development status and applications of in situ cone penetration test technology[J]. Ocean Technology, 23 (4): 32-36. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYJS200404008.htm
|
Lunne T. 2010. The CPT in offshore soil investigations—A historic perspective[C]//2nd International Symposium on Lone Penetration Testing, 1: 43.
|
Nguyen T D, Chung S G. 2015. Effect of shaft area on ball resistances in soft clays[J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 168 (2): 103-119. doi: 10.1680/geng.14.00023
|
Nian T K, Fan N, Jiao H B, et al. 2018. Full-flow strength tests on the soft clay in the northern slope of the South China Sea[J]. Chinese Journal of Geotechnical Engineering, (4): 602-611. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTGC201804005.htm
|
Peng P. 2018. Research on penetration mechanism and its application on offshore engineering[D]. Nanjing: Southeast University.
|
Randolph M F, Hefer P A, Geise J M, et al. 1998. Improved seabed strenght profiling using T-bar penetrometer[C]//Offshore Site Investigation and Foundation Behaviour: New Frontiers-Proceedings of an International Conference.
|
Rémai Z. 2013. Correlation of undrained shear strength and CPT resistance[J]. Periodica Polytechnica Civil Engineering, 57 (1): 39-44. doi: 10.3311/PPci.2140
|
Sacchetto M, Trevisan A, Elmgren K, et al. 2004. CPTWD(Cone Penetration Test While Drilling) a new method for deep geotechnical surveys[C]//Proceeding of ISC-2 on Geotechnical and Geophysical Site Characterization, 1: 787.
|
Standards Association of Australia. 1993. Geotechnical site investigations(AS 1726-1993)[S]. NSW, Australia: Standard Australia(Standards Association of Austalia).
|
Tao K, Zhao J M, Xu X C. 2013. Influencing factors and countermeasures of sea cross-plate shear test[J]. China Water Transport, 13 (9): 329-330.
|
The Professional Standards Compilation Group of People's Republic of China. 2002. Code for investigation of geotechnical engineering(GB 50021-2001)[S]. Beijing: China Construction Industry Press.
|
Walker J, Yu H S. 2006. Adaptive finite element analysis of cone penetration in clay[J]. Acta Geotechnica, 1(1): 43-57. doi: 10.1007/s11440-006-0005-9
|
Walker J, Yu H S. 2010. Anslysis of the cone penetration test in layered clay[J]. Geotechnique, 60(12): 939-948. doi: 10.1680/geot.7.00153
|
Wang C, Yu Y J, Kou B B. 2017. Summary of marine in-situ testing methods[J]. Ocean Development and Management, 34 (1): 81-86. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HKGL201701016.htm
|
Wang D, Bienen B, Nazem M, et al. 2015. Large deformation finite element analyses in gectechnical engineering[J]. Computers and Geotechnics, 65: 104-114. doi: 10.1016/j.compgeo.2014.12.005
|
Wei D B, Yang Q, Xia J X. 2021. Factors influencing shear and its variation law[J]. Marine Geology Frontiers, 37 (8): 28-33.
|
Wu H, Zhu H H, Zhou G Y, et al. 2020. Experimental study on distributed monitoring of soil shear displacement considering deformation compatibility[J]. Journal of Engineering Geology, 28 (4): 716-724.
|
Yang Y, Liu S Y, Cai G J, et al. 2017. Review on penetration mechanism and application of Ball penetrometer in offshore engineering[J]. Journal of Engineering Geology, 25 (6): 1603-1609. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201706024.htm
|
Yao S L, Zheng X Y. 2015. Introduction of offshore in-situ vane shear test[J]. Coastal Engineering, 34 (2): 67-73. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HAGC201502008.htm
|
Zhang H, Jia Y G, Liu X L, et al. 2019. Progress in in-situ measurement of sediment mechanical properties for full ocean depth[J]. Marine Geology Frontiers, 35 (2): 4-12. http://en.cnki.com.cn/Article_en/CJFDTotal-HYDT201902001.htm
|
Zhao W, Wang R R, Li Z Y, et al. 2013. Laboratory and centrifuge model tests study on full flow penetrometers[J]. Beifang Jiaotong, (6): 1-5. http://en.cnki.com.cn/Article_en/CJFDTOTAL-LNJT201306002.htm
|
陈奇, 石要红, 潘毅, 等. 2007. 基于downhole工艺的海底静力触探及其设备研制[J]. 海洋工程, 25 (4): 73-76. doi: 10.3969/j.issn.1005-9865.2007.04.012
|
范宁, 赵维, 年廷凯, 等. 2017. 一种测试海底泥流强度的新型全流动贯入仪[J]. 上海交通大学学报, 51 (4): 456-467. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201704012.htm
|
郭绍曾, 刘润. 2015. 静力触探测试技术在海洋工程中的应用[J]. 岩土工程学报, 37 (S1): 207-211. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2015S1040.htm
|
郭绍曾, 刘润, 张雪东. 2017. 浅表层软黏土不排水强度的原位测试方法[J]. 岩土工程学报, 41 (2): 303-310. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902009.htm
|
郭兴森. 2021. 海底地震滑坡易发性与滑坡-管线相互作用研究[D]. 大连: 大连理工大学.
|
胡越, 王宇. 2020. 静力触探识别场地土层分布的贝叶斯学习方法研究[J]. 工程地质学报, 28 (5): 966-972. doi: 10.13544/j.cnki.jeg.2020-263
|
季福东, 贾永刚, 刘晓磊, 等. 2016. 海底沉积物工程力学性质原位测量方法[J]. 海洋地质与第四纪地质, 36 (3): 191-200. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201603025.htm
|
蒋衍洋. 2011. 海上静力触探测试方法研究及工程应用[D]. 天津: 天津大学.
|
李高山, 潘永坚, 孟叙华. 2019. 不同取样方法下饱和软土物理力学性状对比试验分析[J]. 工程地质学报, 27 (3): 550-558. doi: 10.13544/j.cnki.jeg.2018-103
|
刘恒宇. 2020. 海底沉积物原位剪切力测量及贯入系统研究[D]. 济南: 山东大学.
|
刘锐明, 袁庆盟, 孔亮, 等. 2019. 基于统一硬化参数的深海能源土本构模型[J]. 工程地质学报, 27 (4): 811-818. doi: 10.13544/j.cnki.jeg.2018-249
|
刘雨, 祝汉柱, 陈贵标, 等. 2017. PeneVector海床式静力触探系统研发及工程应用[C]//第十五届全国工程物探与岩土工程测试学术大会论文集. 北京: [出版者不详].
|
陆凤慈, 曲延大, 廖明辉. 2004. 海上静力触探(CPT)测试技术的发展现状和应用[J]. 海洋技术, 23 (4): 32-36. doi: 10.3969/j.issn.1003-2029.2004.04.008
|
年廷凯, 范宁, 焦厚滨, 等. 2018. 南海北部陆坡软黏土全流动强度试验研究[J]. 岩土工程学报, (4): 602-611. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201804005.htm
|
彭鹏. 2018. T型全流触探贯入仪作用机理及海洋软土工程应用研究[D]. 南京: 东南大学.
|
陶凯, 赵家明, 徐绪程. 2013. 海上十字板剪切试验的影响因素及应对措施[J]. 中国水运(下半月), 13 (9): 329-330. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSUX201309158.htm
|
王偲, 于彦江, 寇贝贝. 2017. 海洋原位试验方法综述[J]. 海洋开发与管理, 34 (1): 81-86. doi: 10.3969/j.issn.1005-9857.2017.01.016
|
魏定邦, 杨强, 夏建新. 2021. 深海沉积物抗剪强度影响因素及其变化规律[J]. 海洋地质前沿, 37 (8): 28-33. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT202108005.htm
|
吴涵, 朱鸿鹄, 周谷宇, 等. 2020. 考虑变形协调的土体剪切位移分布式测试研究[J]. 工程地质学报, 28 (4): 716-724. doi: 10.13544/j.cnki.jeg.2019-203
|
杨岩, 刘松玉, 蔡国军, 等. 2017. 球型全流触探仪的机理研究及工程应用综述[J]. 工程地质学报, 25 (6): 1603-1609. doi: 10.13544/j.cnki.jeg.2017.06.024
|
姚首龙, 郑喜耀. 2015. 海上原位十字板剪切试验方法介绍[J]. 海岸工程, 34 (2): 67-73. https://www.cnki.com.cn/Article/CJFDTOTAL-HAGC201502008.htm
|
张红, 贾永刚, 刘晓磊, 等. 2019. 全海深海底沉积物力学特性原位测试技术[J]. 海洋地质前沿, 35 (2): 4-12. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201902001.htm
|
赵维, 王冉冉, 李志阳, 等. 2013. 全流动贯入仪的室内和离心模型试验研究[J]. 北方交通, (6): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-LNJT201306002.htm
|
中华人民共和国国家标准编写组. 2002. 岩土工程勘察规范(GB 50021-2001)[S]. 北京: 中国建筑工业出版社.
|