Volume 29 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
Liu Lele, Li Yanlong, Zhang Xuhui, et al. 2021.Experimental study on gas hyirale system stale evolving dluring deyessuration[J]. Jourmal of Engineering Geology, 29(6): 1916-1925. doi: 10.13544/j.cnki.jeg.2021-0695
Citation: Liu Lele, Li Yanlong, Zhang Xuhui, et al. 2021.Experimental study on gas hyirale system stale evolving dluring deyessuration[J]. Jourmal of Engineering Geology, 29(6): 1916-1925. doi: 10.13544/j.cnki.jeg.2021-0695


doi: 10.13544/j.cnki.jeg.2021-0695

the National Key Research and Development Project 2018YFE0126400

the National Natural Science Foundation of China 41872136

the National Natural Science Foundation of China 41976074

  • Received Date: 2021-10-25
  • Rev Recd Date: 2021-12-03
  • Available Online: 2022-01-06
  • Publish Date: 2021-12-25
  • Natural gas hydrate has been treated as a potential energy resource for decades. Depressurization is currently the most promising method for hydrate production. However, its efficiency is far from the commercial need. Hydrate production involves heat transfer, multi-phase seepage, phase transition, and reservoir deformation. A thorough understanding of how multiple physical processes evolve during depressurization is of great significance for efficiency enhancement of hydrate production. An experiment was carried out to simulate depressurization induced evolution of the multiple physical processes. Methane hydrate was formed by using the gas excess method under a heterogeneous temperature condition. Evolutions of pore pressures and temperatures were analyzed. A comparison between gas production process and heat transfer process was discussed. Main conclusions are drawn as follow: temperature distribution is parabola-like after hydrate formation, which has higher temperatures in two sides of the sample. In addition, hydrate distribution is inhomogeneous. Pore pressures decrease completely from the outlet to the inlet, and temperatures increase from the two sides into the middle part. The gas production process related to the heat transfer process well, and the stable stage for gas production is controlled by the heat transfer process. It is a feasible way to replace heat conduction by heat convection or choose a slow depressurization strategy to enhance production efficiency for the commercial need.
  • loading
  • Feng J C, Wang Y, Li X S. 2016. Hydrate dissociation induced by depressurization in conjunction with warm brine stimulation in cubic hydrate simulator with silicasand[J]. Applied Energy, 174 : 181-191. doi: 10.1016/j.apenergy.2016.04.090
    He J X, Zhong C M, Yao Y J, et al. 2020. The exploration and production test of gas hydrate and its research progress and exploitation prospect in the northern South ChinaSea[J]. Marine Geology Frontiers, 36 (12): 1-14.
    Hong H, Pooladi-Darvish M, Bishnoi P R. 2003. Analytical modelling of gas production from hydrates in porousmedia[J]. Journal of Canadian Petroleum Technology, 42 (11): 45-56. doi: 10.2118/03-11-05
    Konno Y, Masuda Y, Akamine K, et al. 2016. Sustainable gas production from methane hydrate reservoirs by the cyclic depressurization method[J]. Energy Conversion and Management, 108 : 439-445. doi: 10.1016/j.enconman.2015.11.030
    Lee J, Park S, Sung W. 2010. An experimental study on the productivity of dissociated gas from gas hydrate by depressurization scheme. Energy Conversion and Management, 51 (12): 2510-2515. doi: 10.1016/j.enconman.2010.05.015
    Li D L, Liang D Q, Fan S S, et al. 2008. In situ hydrate dissociation using microwave heating: Preliminarystudy[J]. Energy Conversion and Management, 49 (8): 2207-2213. doi: 10.1016/j.enconman.2008.01.031
    Li J, Ye J, Qin X, et al. 2018. The first offshore natural gas hydrate production test in South ChinaSea[J]. China Geology, 1 (1): 5-16. doi: 10.31035/cg2018003
    Li S D, Li X, Wang S J, et al. 2020. A novel method for natural gas hydrate production: Depressurization and backfilling with in-situ supple-mentalhear[J]. Journal of Engineering Geology, 28 (2): 282-293.
    Li S D, Sun Y M, Chen W C, et al. 2019. Analyses of gas production methods and offshore production tests of natural gashydrates[J]. Journal of Engineering Geology, 27 (1): 55-68. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201901007.htm
    Li Y L, He C Q, Wu N Y, et al. 2021a. Laboratory study on hydrate production using a slow, multistage depressurization strategy[J]. Geofluids, (3): 1-13. http://www.researchgate.net/publication/349591343_Laboratory_Study_on_Hydrate_Production_Using_a_Slow_Multistage_Depressurization_Strategy
    Li Y L, Liu L, Jin Y, et al. 2021b. Characterization and development of marine natural gas hydrate reservoirs in marine clayey-silt reservoirs: A review anddiscussion[J]. Advances in Geo-Energy Research, 5 : 75-86. doi: 10.46690/ager.2021.01.08
    Li Y L, Wu N Y, He C Q, et al. 2021c. Nucleation probability and memory effect of methane-propane mixed gashydrate[J]. Fuel, 291: 120103. doi: 10.1016/j.fuel.2020.120103
    Li Y L, Ning F, Wu N, et al. 2020. Protocol for sand control screen design of production wells for clayey silt hydrate reservoirs: A casestudy[J]. Energy Science and Engineering, 8 (5): 1438-1449. doi: 10.1002/ese3.602
    Li Y L, Wu N Y, Ning F, et al. 2019. A sand-production control system for gas production from clayey silt hydratereservoirs[J]. China Geology, 2 : 1-13. doi: 10.31035/cg2018078
    Liu C L, Sun Y B. 2021. Characteristics of marine gas hydrate reservoir and its resource evaluationmethods[J]. Marine Geology & Quantenary Geology, 41 (5): 44-57.
    Liu J, Liu L H, Wu N Y, et al. 2021. Evolution of gas hydrate stability zone in the deep water of Dongsha sea area since the Last GlaciationMaximum[J]. Marine Geology & Quantenary Geology, 41 (2): 146-155.
    Liu L L, Lu X B, Zhang X H. 2013. An experimental study of seepage front due to methane hydrate dissociation by depressurization in sandysediment[J]. Natural Gas Industry, 33 (11): 130-136. http://www.researchgate.net/profile/Lele_Liu3/publication/280632369_An_experimental_study_of_seepage_front_due_to_methane_hydrate_dissociation_by_depressurization_in_sandy_sediments_%28In_Chinese%29/links/55e4fbeb08aede0b57358728.pdf
    Liu L L, Lu X B, Zhang X H. 2014. Numerical analysis on evolution of natural gas hydrate decomposition region in hydrate-bearingsediment[J]. Acta Petrolei Sinica, 35 (5): 941-951. http://www.researchgate.net/profile/Lele_Liu3/publication/280632212_Numerical_analysis_on_evolution_of_natural_gas_hydrate_decomposition_region_in_hydrate-bearing_sediments_(In_Chinese)/links/55e4f9bd08aecb1a7ccb90a2.pdf
    Liu L L, Lu X B, Zhang X H. 2015. A theoretical model for predicting the spatial distribution of gas hydrate dissociation under the combination of depressurization and heating without the discontinuous interfaceassumption[J]. Journal of Petroleum Science and Engineering, 133 : 589-601. doi: 10.1016/j.petrol.2015.07.005
    Mao P, Wu N, Sun J, et al. 2021. Numerical simulations of depressurization-induced gas production from hydrate reservoirs at site GMGS3-W19 with different free gas saturations in the northern South ChinaSea[J]. Energy Science and Engineering, 9 : 1416-1439. doi: 10.1002/ese3.903
    Merey S, Sinayuc C. 2017. Numerical simulations for short-term depressurization production test of two gas hydrate sections in the BlackSea[J]. Journal of Natural Gas Science and Engineering, 44 : 77-95. doi: 10.1016/j.jngse.2017.04.011
    Numasawa M, Yamamoto K, Yasuda M, et al. 2008. Objectives and operation overview of the 2007 JOGMEC/NRCAN/AURORA Mallik 2L-38 gas hydrate production test[C]//International Conference on Gas Hydrates. Vancouver, British Columbia, Canada: [s. n. ].
    Peng Y Y, Su Z, Liu L H, et al. 2020. Numerical study on the movement of the decomposition front of natural gas hydrate under depressurization[J]. Marine Geology & Quantenary Geology, 40 (6): 198-207.
    Rahim I, Nomura S, Mukasa S, et al. 2015. Decomposition of methane hydrate for hydrogen production using microwave and radio frequency in-liquid plasmamethods[J]. Applied Thermal Engineering, 90 : 120-126. doi: 10.1016/j.applthermaleng.2015.06.074
    Schoderbek D, Farrell H, Hester K, et al. 2013. ConocoPhillips gas hydrate production test final technicalreport[R]. Houston, TX(United States): Conoco Phillips Co.
    Sloan E D. 2003. Fundamental principles and applications of natural gashydrates[J]. Nature, 426 : 353-363. doi: 10.1038/nature02135
    Sun J Y, Ye Y G, Liu C L, et al. 2010. Experimental research of gas hydrate dissociation in sediment by depressurization method[J]. Geoscience, 24 (3): 614-621. http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ201003029.htm
    Sun X, Nanchary N, Mohanty K K. 2005.1-D modeling of hydrate depressurization in porousmedia[J]. Transport in Porous Media, 58 : 315-338. doi: 10.1007/s11242-004-1410-x
    Terzariol M, Goldsztein G, Santamarina J C. 2017. Maximum recoverable gas from hydrate bearing sediments bydepressurization[J]. Energy, 141 : 1622-1628. doi: 10.1016/j.energy.2017.11.076
    Wan Y Z, Wu N Y, Hu G W, et al. 2018. Reservoir stability in the process of natural gas hydrate production by depressurization in the Shenhu area of the South ChinaSea[J]. Natural Gas Industry, 38 (4): 117-128. http://www.researchgate.net/publication/327988692_Reservoir_stability_in_the_process_of_natural_gas_hydrate_production_by_depressurization_in_the_Shenhu_area_of_the_South_China_Sea
    Wang B, Dong H, Fan Z, et al. 2020. Numerical analysis of microwave stimulation for enhancing energy recovery from depressurized methane hydratesediments[J]. Applied Energy, 262: 114559. doi: 10.1016/j.apenergy.2020.114559
    Wang B, Dong H, Liu Y, et al. 2018. Evaluation of thermal stimulation on gas production from depressurized methane hydrate deposits[J]. Applied Energy, 227 : 710-718. doi: 10.1016/j.apenergy.2017.08.005
    Wu N Y, Huang L, Hu G W, et al. 2017. Geological controlling factors and scientific challenge for offshore gas hydrateexploitation[J]. Marine Geology & Quantenary Geology, 37 (5): 1-11. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ201705001.htm
    Wu N Y, Li Y L, Liu L L, et al. 2021. Controlling factors and research prospect on creeping behaviors of marine natural gas hydrate-bearing-strata[J]. Marine Geology & Quantenary Geology, 41 (5): 3-11.
    Wu N Y, Li Y L, Wan Y Z, et al. 2020. Prospect of marine natural gas hydrate stimulation theory and technologysystem[J]. Natural Gas Industry, 40 (8): 100-115. http://www.sciencedirect.com/science/article/pii/S2352854021000243
    Wu N Y, Li Y L, Chen Q, et al. 2021. Sand production management during marine natural gas hydrate exploitation: review and an innovativesolution[J]. Energy & Fuels, 03822. doi: 10.1021/acs.energyfuels.0c03822
    Yamamoto K, Terao Y, Fujii T, et al. 2014. Operational overview of the first offshore production test of methane hydrates in the Eastern nankai Trough[C]//Offshore Technology Conference. Houston, Texas, USA: [s. n. ].
    Yang X, Sun C Y, Su K H, et al. 2012. A three-dimensional study on the formation and dissociation of methane hydrate in porous sediment bydepressurization[J]. Energy Conversion and Management, 56 : 1-7. doi: 10.1016/j.enconman.2011.11.006
    Ye J, Qin X, Xie W, et al. 2020. The second natural gas hydrate production test in the South ChinaSea[J]. China Geology, 3 : 197-209. http://d.wanfangdata.com.cn/periodical/zgdz-e202002002
    Ye Y G, Liu C L. 2011. Natural gas hydrates experimental techniques and theirapplications[M]. Beijing: Geology Press.
    Zhang Y, Wan Y, Liu L, et al. 2021. Changes in reaction surface during the methane hydrate dissociation and its implications for hydrateproduction[J]. Energy, 230: 120848. doi: 10.1016/j.energy.2021.120848
    Zhao J, Liu Y, Guo X, et al. 2020. Gas production behavior from hydrate-bearing fine natural sediments through optimized step-wisedepressurization[J]. Applied Energy, 260: 114275. doi: 10.1016/j.apenergy.2019.114275
    何家雄, 钟灿鸣, 姚永坚, 等. 2020. 南海北部天然气水合物勘查试采及研究进展与勘探前景[J]. 海洋地质前沿, 36 (12): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT202012001.htm
    李守定, 李晓, 王思敬, 等. 2020. 天然气水合物原位补热降压充填开采方法[J]. 工程地质学报, 28 (2): 282-293. doi: 10.13544/j.cnki.jeg.2020-061
    李守定, 孙一鸣, 陈卫昌, 等. 2019. 天然气水合物开采方法及海域试采分析[J]. 工程地质学报, 27 (1): 55-68. doi: 10.13544/j.cnki.jeg.2019-065
    刘昌岭, 孙运宝. 2021. 海洋天然气水合物储层特性及其资源量评价方法[J]. 海洋地质与第四纪地质, 41 (5): 44-57. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ202105005.htm
    刘杰, 刘丽华, 吴能友, 等. 2021. 南海东沙海域深水区末次冰期以来天然气水合物稳定带演化[J]. 海洋地质与第四纪地质, 41 (2): 146-155. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ202102015.htm
    刘乐乐, 鲁晓兵, 张旭辉. 2013. 砂土沉积物中甲烷水合物降压分解渗流阵面实验[J]. 天然气工业, 33 (11): 130-136. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201311028.htm
    刘乐乐, 鲁晓兵, 张旭辉. 2014. 天然气水合物分解区演化数值分析[J]. 石油学报, 35 (5): 941-951. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201405015.htm
    刘乐乐, 鲁晓兵, 张旭辉. 2015. 降压开采模拟试验的水合物分解阵面演化过程[J]. 实验力学, 30 (4): 469-476. https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201504008.htm
    彭盈钰, 苏正, 刘丽华, 等. 2020. 天然气水合物降压开采分解前缘移动数值研究[J]. 海洋地质与第四纪地质, 40 (6): 198-207. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ202006018.htm
    孙建业, 业渝光, 刘昌岭, 等. 2010. 沉积物中天然气水合物减压分解实验[J]. 现代地质, 24 (3): 614-621. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201003029.htm
    万义钊, 吴能友, 胡高伟, 等. 2018. 南海神狐海域天然气水合物降压开采过程中储层的稳定性[J]. 天然气工业, 38 (4): 117-128. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201804021.htm
    吴能友, 黄丽, 胡高伟, 等. 2017. 海域天然气水合物开采的地质控制因素和科学挑战[J]. 海洋地质与第四纪地质, 37 (5): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201705001.htm
    吴能友, 李彦龙, 刘乐乐, 等. 2021. 海洋天然气水合物储层蠕变行为的主控因素与研究展望[J]. 海洋地质与第四纪地质, 41 (5): 3-11. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ202105002.htm
    吴能友, 李彦龙, 万义钊, 等. 2020. 海域天然气水合物开采增产理论与技术体系展望[J]. 天然气工业, 40 (8): 100-115. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202008013.htm
    业渝光, 刘昌岭. 2011. 天然气水合物实验技术及应用[M]. 北京: 地质出版社.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article views (182) PDF downloads(36) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint