Volume 29 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
Zheng Defeng, Lei Deyu, Yan Chenglin, et al. 2021. Global research trends in submarine landslides : A bibliometrie analysis based on Web of Science publications [J].Journal of Engineering Geology, 29(6): 1805-1814. doi: 10.13544/j.cnki.jeg.2021-0712
Citation: Zheng Defeng, Lei Deyu, Yan Chenglin, et al. 2021. Global research trends in submarine landslides : A bibliometrie analysis based on Web of Science publications [J].Journal of Engineering Geology, 29(6): 1805-1814. doi: 10.13544/j.cnki.jeg.2021-0712

GLOBAL RESEARCH TRENDS IN SUBMARINE LANDSLIDES: A BIBLIOMETRIC ANALYSIS BASED ON WEB OF SCIENCE PUBLICATIONS

doi: 10.13544/j.cnki.jeg.2021-0712
Funds:

the National Natural Science Foundation of China 42077272

the National Natural Science Foundation of China 51879036

Liaoning Revitalization Talents Program XLYC2002036

  • Received Date: 2021-10-30
  • Rev Recd Date: 2021-11-15
  • Available Online: 2022-01-06
  • Publish Date: 2021-12-25
  • The bibliometric analysis platform and visualization technology are used to quantitatively analyze the research characteristics in the field of submarine landslides from 2000 to 2021, and further reveal these research changes and development trends in different periods of time. The results show that: (1)The number of scientific research outputs in the field of submarine landslides has grown rapidly during the past 20 years. China is the country with the fastest growth on the submarine landslides publications,and has relatively closer cooperation with other countries. (2)By analyzing the research institutions of China and the United States,it is found that the latter has the largest number of research institutions. China's research institutions have most cooperation with other research institutions at home and abroad,and are comparatively influential. (3)The research fields on submarine landslides for the scientists at home and abroad in the past 20 years have been basically consistent. However,on the trigger mechanism,the foreign scholars have paid more attention to the tsunami-induced submarine landslides in recent years. Chinese scholars have more focused on those caused by hydrate decomposition,which can be the new trend in the future researches on submarine landslides.
  • loading
  • Dong Y K,Wang D,Randolph M F. 2017. Investigation of impact forces on pipeline by submarine landslide using material point method[J]. Ocean Engineering,146 (1): 21-28. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0029801817305279&originContentFamily=serial&_origin=article&_ts=1506605749&md5=7c29c1dd9977410462bd8e453e6cef9c
    Dong Y K, Wang D, Randolph M F. 2020. Quantification of impact forces on fixed mudmats from submarine landslides using the material point method[J]. Applied Ocean Research, 102: 102227. doi: 10.1016/j.apor.2020.102227
    Elger J, Berndt C, Rupke L, et al. 2018. Submarine slope failures due to pipe structure formation[J]. Nature Communications, 9(1): 715. doi: 10.1038/s41467-018-03176-1
    Fan N, Sahdi F, Zhang W, et al. 2021. Effect of pipeline-seabed gaps on the vertical forces of a pipeline induced by submarine slide impact[J]. Ocean Engineering, 221(6): 108506. http://www.sciencedirect.com/science/article/pii/S002980182031413X
    Guo J Y, Guan J. 2018. Global research output in geological engineering: A bibliometric analysis of Web of science publications[J]. Journal of Engineering Geology, 26 (5): 1397-1407. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201805037.htm
    Guo X S, Nian T K, Fan N, et al. 2021. Optimization design of a honeycomb-hole submarine pipeline under a hydrodynamic landslide impact[J]. Marine Georesources & Geotechnology, 39 (9): 1055-1070. doi: 10.1080/1064119X.2020.1801919
    Guo X S, Zheng D F, Nian T K, et al. 2019. Large-scale seafloor stability evaluation of the northern continental slope of South China Sea[J]. Marine Georesources and Geotechnology, (4): 1-14. doi: 10.1080/1064119X.2019.1632996
    Hsu S K, Kuo J, Lo C L, et al. 2008. Turbidity currents, submarine landslides and the 2006 pingtung earthquake off SW Taiwan[J]. Terrestrial Atmospheric & Oceanic Sciences, 19 (6): 767-772.
    Huo Y D, Nian T K, Jiao H B, et al. 2019. Seismic stability of submarine clay slopes based on upper bound approach[J]. Journal of Engineering Geology, 27 (2): 408-414. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201902022.htm
    Li C Y, Zhang W, Wu F D, et al. 2018. Run-out process simulation of submarine landslide using material point method[J]. Journal of Engineering Geology, 26 (S1): 114-119.
    Li S D, Li X, Wang S J, et al. 2020. A novel method for natural gas hydrate production: Depressurization and backfilling with in-situ supplemental heat[J]. Journal of Engineering Geology, 28 (2): 282-293.
    Li S D, Sun Y M, Chen W C, et al. 2019. Analyses of gas production methods and offshore production tests of natural gas hydrates[J]. Journal of Engineering Geology, 27 (1): 55-68. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201901007.htm
    Liu J, Gao W, Li P, et al. 2018. Rearch progress in submarine landslide and its enlightenment to study the seabed stability in the South China Sea[J]. Journal of Engineering Geology, 26 (S1): 120-127.
    Liu R, Wang X Y. 2018. Lateral global buckling high-order mode analysis of a submarine pipeline with imperfection[J]. Applied Ocean Research, 73 : 107-126. doi: 10.1016/j.apor.2018.01.014
    Nian T K, Guo X S, Fan N, et al. 2018. Impact forces of submarine landslides on suspended pipelines considering the low-temperature environment[J]. Applied Ocean Research, 81 : 116-125. doi: 10.1016/j.apor.2018.09.016
    Nian T K, Guo X S, Zheng D F, et al. 2019. Susceptibility assessment of regional submarine landslides triggered by seismic actions[J]. Applied Ocean Research, 93: 101964. doi: 10.1016/j.apor.2019.101964
    Randolph M F, Gaudin C, Gourvenec S M, et al. 2011. Recent advances in offshore geotechnics for deep water oil and gas developments[J]. Ocean Engineering, 38 (7): 818-834. doi: 10.1016/j.oceaneng.2010.10.021
    Shi Y M, Gao F P, Wang N, et al. 2021. Coupled flow-seepage-elastoplastic modeling for competition mechanism between lateral instability and tunnel erosion of a submarine pipeline[J]. Journal of Marine Science and Engineering, 9(8): 889. doi: 10.3390/jmse9080889
    Urgeles R, Leynaud D, Lastras G, et al. 2006. Back-analysis and failure mechanisms of a large submarine slide on the ebro slope, NW Mediterranean[J]. Marine Geology, 226(3-4): 185-206. doi: 10.1016/j.margeo.2005.10.004
    Vanneste M, Sultan N, Garziglia S, et al. 2014. Seafloor instabilities and sediment deformation processes: The need for integrated, multi-disciplinary investigations[J]. Marine Geology, 352 : 183-214. doi: 10.1016/j.margeo.2014.01.005
    Wu S G, Wang J L. 2018. On the China's successful gas production test from marine gas hydrate reservoirs[J]. Chinese Science Bulletin, 63 (1): 2-8. doi: 10.1360/N972017-00645
    Xiu Z X, Liu L J, Li X S, et al. 2016. Slope stability analysis of submarine canyon area along pipeline route of LIWAN3-1 gasfield[J]. Journal of Engineering Geology, 24 (4): 535-541. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201604008.htm
    Zheng D F, Nian T K, Liu B, et al. 2019. Investigation of the stability of submarine sensitive clay slopes under wave-induced pressure[J]. Marine Georesources & Geotechnology, 37 (1): 116-127. http://www.onacademic.com/detail/journal_1000040884051410_9bfc.html
    Zhu C Q, Jia Y G, Liu X L, et al. 2015. Classfication and genetic mechanism of submarine landslide: a review[J]. Marine Geology & Quaternary Geology, 35 (6): 153-163. http://www.researchgate.net/publication/287948956_Classification_and_Genetic_Mechanism_of_Submarine_Landslide_A_Review
    郭静芸, 关静. 2018. 基于Web of Science数据库的地质工程研究文献计量分析[J]. 工程地质学报, 26 (5): 1397-1407. doi: 10.13544/j.cnki.jeg.2018-301
    霍沿东, 年廷凯, 焦厚滨, 等. 2019. 基于极限分析上限方法的海底斜坡地震稳定性[J]. 工程地质学报, 27 (2): 408-414. doi: 10.13544/j.cnki.jeg.2017-621
    厉成阳, 张巍, 吴方东, 等. 2018. 海底滑坡运动全过程的物质点法模拟[J]. 工程地质学报, 26 (S1): 114-119. doi: 10.13544/j.cnki.jeg.2018117
    李守定, 李晓, 王思敬, 等. 2020. 天然气水合物原位补热降压充填开采方法[J]. 工程地质学报, 28 (2): 282-293. doi: 10.13544/j.cnki.jeg.2020-061
    李守定, 孙一鸣, 陈卫昌, 等. 2019. 天然气水合物开采方法及海域试采分析[J]. 工程地质学报, 27 (1): 55-68. doi: 10.13544/j.cnki.jeg.2019-065
    刘杰, 高伟, 李萍, 等. 2018. 深海滑坡研究进展及我国南海海底稳定性研究的现状与思考[J]. 工程地质学报, 26(S1): 120-127. doi: 10.13544/j.cnki.jeg.2018199
    吴时国, 王吉亮. 2018. 南海神狐海域天然气水合物试采成功后的思考[J]. 科学通报, 63 (1): 2-8. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201801003.htm
    修宗祥, 刘乐军, 李西双, 等. 2016. 荔湾3-1气田管线路由海底峡谷段斜坡稳定性分析[J]. 工程地质学报, 24 (4): 535-541. doi: 10.13544/j.cnki.jeg.2016.04.007
    朱超祁, 贾永刚, 刘晓磊, 等. 2015. 海底滑坡分类及成因机制研究进展[J]. 海洋地质与第四纪地质, 35 (6): 153-163. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201506023.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article views (188) PDF downloads(62) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint