Volume 29 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
Yan Chenglin, Zheng Defeng, Nian Tingkai, et al. 2021. Fuzzy Bayesian network model based on ANP and its application to coastal zone geohazard risk assessment[J].Journal of Engineering Geology, 29(6): 1862-1868. doi: 10.13544/j.cnki.jeg.2021-0715
Citation: Yan Chenglin, Zheng Defeng, Nian Tingkai, et al. 2021. Fuzzy Bayesian network model based on ANP and its application to coastal zone geohazard risk assessment[J].Journal of Engineering Geology, 29(6): 1862-1868. doi: 10.13544/j.cnki.jeg.2021-0715


doi: 10.13544/j.cnki.jeg.2021-0715

  • Received Date: 2021-10-31
  • Rev Recd Date: 2021-11-29
  • Available Online: 2022-01-06
  • Publish Date: 2021-12-25
  • The coastal zone is located in the interaction area between land and sea. Its unique geographical, geological and environmental conditions lead to the frequent occurrence of geological disasters, which are high liability and risk. Considering the important economic and social attributes of the coastal zone, it is very important to carry out a geohazard risk assessment in the coastal zone. In this paper, the geohazard risk assessment model based on fuzzy Bayesian network is established and combined with the Analytic Network Process(ANP), to determine the conditional probability of fuzzy Bayesian network and simplify the Bayesian network structure. On this basis, the coastal zone in the eastern part of the Liaodong peninsula is employed as the study area. Five main types of geohazards including rockfall, landslide, ground subsidence, seawater intrusion and coastal erosion are selected as evaluation objects. Further, the susceptibility evaluation, hazard assessment and risk assessment of geohazards based on the fuzzy Bayesian network model coupling with ANP are carried out. The comprehensive geohazard risk assessment map is also achieved. The results show that the southwestern coastal zone of the study area is the highest or higher risk area. The zone has an area of 249km2 and 9.1% of the total area. The research results can provide an important reference for land and resources development, economic construction planning, disaster prevention and mitigation in the coastal zone, and also have certain reference significance for the risk assessment of geohazards in coastal zones of similar areas.
  • loading
  • Chen J P, Fan L M, Li C, et al. 2014. Mine geological environment impact assessment based on fuzzy comprehensive evaluation and GIS technology[J]. Coal Geology of China, 26 (2): 43-48.
    Chen J, Fu J Q. 2012. Fire alarm system based on multi-sensor Bayes network[J]. Procedia Engineering, 29 (5): 2551-2555. http://www.onacademic.com/detail/journal_1000035735512210_fa20.html
    Chen X Y, Ni H Y, Li M H, et al. 2021. Geo-hazard susceptibility evaluation based on weighted information value model and ISODATA cluster[J]. Journal of Catastrophology, 36 (2): 71-78.
    Dai L X, Xu Q, Fan X M, et al. 2017. A preliminary study on spatial distribution patterns of landslides triggered by Jiuzhaigou earthquake in Sichuan on August 8th, 2017 and their susceptibility assessment[J]. Journal of Engineering Geology, 25 (4): 1151-1164. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201704030.htm
    Fan Z Y, Gou X F, Qin M Y, et al. 2018. Information and logistic regression models based coupling analysis for susceptibility of geological hazards[J]. Journal of Engineering Geology, 26 (2): 340-347. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201802008.htm
    Li Y G, Liu X T, Han Z, et al. 2020. Spatial proximity-based geographically weighted regression model for landslide susceptibility assessment: A case study of Qingchuan area, China[J]. Applied Sciences, 10(3): 1107. doi: 10.3390/app10031107
    Liu C Z. 2019. Analysis methods on the risk identification of landslide disasters[J]. Journal of Engineering Geology, 27 (1): 88-97. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201901010.htm
    Liu F, Qin S W, Qiao S S, et al. 2019. Slope geological hazards susceptibility evaluation based on neural network model: A case study from Yongji county of Jilin Province[J]. Global Geology, 38 (4): 1166-1176.
    Liu J L. 2013. Study on risk analysis of large engineering project method based on fuzzy statistical decision theory[D]. Changchun: Jilin University.
    Luo L G, Pei X J, Gu H, et al. 2020. Risk assessment of geohazards induced by"8 ·8"earthquake based on GIS in Jiuzhaigou scenic area[J]. Journal of Natural Disasters, 29 (3): 193-202.
    Mao S S, Tang Y C. 2012. Bayesian statistics[M]. Beijing: China Statistics Press: 330.
    Qi X, Tang C, Chen Z F, et al. 2012. Research of geohazards risk assessment[J]. Journal of Natural Disasters, 21 (5): 33-40. http://www.researchgate.net/publication/286958921_Research_of_geohazards_risk_assessment
    Song H Y, Liang X R, Pan W S, et al. 2020. Landslide hazards assessment of Duliujiang scenic spot based on GIS[J]. Scientific and Technological Innovation, 36 : 70-73.
    Wang R Q, Wang X L, Liu H Y, et al. 2019. Identification and main controlling factor analysis of collapse and landslide based on fine DEM—Taking Jiacha-Langxian section of Yarlung Zangbo suture zone as an example[J]. Journal of Engineering Geology, 27 (5): 1146-1152. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201905026.htm
    Wang X, Zhao K, Jiang Y L, et al. 2021. Study on dynamic regionalization model of debris flow susceptibility in Nujiang River Basin based on BP neural network[J]. Industrial Minerals & Processing, 2021-03-25, https://kns.cnki.net/kcms/detail/32.1492.TQ.20210323.1549.002.html.
    Xiang X Q, Huang R Q. 2000. Risk assessment and risk management for slope geohazares[J]. Journal of Geological Hazards and Environmental Protection, 11 (1): 38-41. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZHB200001007.htm
    Yang G, Xu P H, Cao C, et al. 2019. Assessment of regional landslide susceptibility absed on combined model of certainty factor method[J]. Journal of Engineering Geology, 27 (5): 1153-1163. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201905027.htm
    Zhang X D. 2018. Study on geological disaster risk assessment based on RS and GIS in Yanchi County, Ningxia[D]. Beijing: China University of Geosciences(Beijing).
    陈建平, 范立民, 李成, 等. 2014. 基于模糊综合评判和GIS技术的矿山地质环境影响评价[J]. 中国煤炭地质, 26 (2): 43-48. doi: 10.3969/j.issn.1674-1803.2014.02.10
    陈绪钰, 倪化勇, 李明辉, 等. 2021. 基于加权信息量和迭代自组织聚类的地质灾害易发性评价[J]. 灾害学, 36 (2): 71-78. doi: 10.3969/j.issn.1000-811X.2021.02.013
    戴岚欣, 许强, 范宣梅, 等. 2017.2017年8月8日四川九寨沟地震诱发地质灾害空间分布规律及易发性评价初步研究[J]. 工程地质学报, 25 (4): 1151-1164. doi: 10.13544/j.cnki.jeg.2017.04.030
    樊芷吟, 苟晓峰, 秦明月, 等. 2018. 基于信息量模型与Logistic回归模型耦合的地质灾害易发性评价[J]. 工程地质学报, 26 (2): 340-347. doi: 10.13544/j.cnki.jeg.2017-052
    刘传正. 2019. 崩塌滑坡灾害风险识别方法初步研究[J]. 工程地质学报, 27 (1): 88-97. doi: 10.13544/j.cnki.jeg.2019-009
    刘飞, 秦胜伍, 乔双双, 等. 2019. 基于神经网络模型的斜坡地质灾害易发性评价: 以吉林永吉为例[J]. 世界地质, 38 (4): 1166-1176. doi: 10.3969/j.issn.1004-5589.2019.04.028
    刘佳琳. 2013. 模糊统计决策理论基础上的大型工程项目风险评估方法研究[D]. 长春: 吉林大学.
    罗路广, 裴向军, 谷虎, 等. 2020. 基于GIS的"8 ·8"九寨沟地震景区地质灾害风险评价[J]. 自然灾害学报, 29 (3): 193-202. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH202003021.htm
    茆诗松, 汤银才. 2012. 贝叶斯统计[M]. 北京: 中国统计出版社: 330.
    齐信, 唐川, 陈州丰, 等. 2012. 地质灾害风险评价研究[J]. 自然灾害学报, 21 (5): 33-40. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201205007.htm
    宋华艳, 梁兴蓉, 潘网生. 2020. 基于GIS的都柳江风景区滑坡灾害易发性评价[J]. 科学技术创新, 36 : 70-73. https://www.cnki.com.cn/Article/CJFDTOTAL-HLKX202036030.htm
    王瑞琪, 王学良, 刘海洋, 等. 2019. 基于精细DEM的崩塌滑坡灾害识别及主控因素分析———以雅鲁藏布江缝合带加查-朗县段为例[J]. 工程地质学报, 27 (5): 1146-1152. doi: 10.13544/j.cnki.jeg.2019056
    王鑫, 赵康, 蒋叶林, 等. 2021. 基于BP神经网络的怒江流域泥石流易发性动态区划模型研究[J/OL]. 化工矿物与加工, 2021-03-25, https://kns.cnki.net/kcms/detail/32.1492.TQ.20210323.1549.002.html.
    向喜琼, 黄润秋. 2000. 地质灾害风险评价与风险管理[J]. 地质灾害与环境保护, 11 (1): 38-41. doi: 10.3969/j.issn.1006-4362.2000.01.008
    杨光, 徐佩华, 曹琛, 等. 2019. 基于确定性系数组合模型的区域滑坡敏感性评价[J]. 工程地质学报, 27 (5): 1153-1163. doi: 10.13544/j.cnki.jeg.2019018
    张晓东. 2018. 基于遥感和GIS的宁夏盐池县地质灾害风险评价研究[D]. 北京: 中国地质大学(北京).
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article views (131) PDF downloads(30) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint