Volume 29 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
Tan Lin, Liu Fang. 2021. The reacivation meehanism of ancienocean land. lides during hydrate proluetion: A preliminary studly [J]. Journal ofEngineering Geology, 29(6): 1907-1915. doi: 10.13544/j.cnki.jeg.2021-0716
Citation: Tan Lin, Liu Fang. 2021. The reacivation meehanism of ancienocean land. lides during hydrate proluetion: A preliminary studly [J]. Journal ofEngineering Geology, 29(6): 1907-1915. doi: 10.13544/j.cnki.jeg.2021-0716


doi: 10.13544/j.cnki.jeg.2021-0716

the National Natural Science Foundation of China 41877241

the Joint Foundation Integration Project for Enterprise Innovation and Development U20B6005

  • Received Date: 2021-10-31
  • Rev Recd Date: 2021-12-10
  • Available Online: 2022-01-06
  • Publish Date: 2021-12-25
  • Ancient landslides are widely developed in hydrate-rich areas in the northern continental slope of the South China Sea. Imprudent hydrate production may result in the reactivation of the ancient submarine landslides. In order to explore the mechanism of the ancient landslide reactivation induced by hydrate production, we analyzed the slope stability and instability modes of two typical ancient landslides: the underburden-type and the associated-type. The analysis accounted for the changes of the transient pore pressure and the soil shear strength during hydrate production within the limit equilibrium analysis framework. The results suggest that hydrate dissociation results in the reduction of the cementing strength and meanwhile, the released gas may be trapped below the ancient landslide body with low permeability, giving rise to a laterally extending high-pressure zone. The potential slip surface of the underburden-type reservoir goes through the ancient slip surface, showing a slide pattern. In the early stage of production, the slope stability decreases due to the pore pressure build-up. Then, during the middle and late stages of production, the slope stability recovers because of the secondary hydrate formation. The production would not trigger the ancient reactivation with the calculation configuration in this study. The slope stability of the associated-type reservoir is affected by both the soil strength reduction and the pore pressure build-up. Hydrate production from an associated-type reservoir may trigger the reactivation of the ancient landslide, showing a slump pattern.
  • loading
  • Chen D X, Wang X J, Völker D, et al. 2016. Three dimensional seismic studies of deep-water hazard-related features on the northern slope of South China Sea[J]. Marine and Petroleum Geology, 77 : 1125-1139. doi: 10.1016/j.marpetgeo.2016.08.012
    Dugan B. 2012. Petrophysical and consolidation behavior of mass transport deposits from the northern Gulf of Mexico, IODP Expedition 308[J]. Marine Geology, 315-318 : 98-107. doi: 10.1016/j.margeo.2012.05.001
    Genuchten V A N. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 44 (5): 892-898. doi: 10.2136/sssaj1980.03615995004400050002x
    GEO-SLOPE InternationalLtd., 2017. Stability Modeling With Geostudio[EB/OL]. https://www.geoslope.com/learning/support-Resources#dnn_BooksHeaderPane.
    Guo X S, Zheng D F, Nian T K, et al. 2020. Large-scale seafloor stability evaluation of the northern continental slope of South China Sea[J]. Marine Georesources and Geotechnology, 37 : 804-817. doi: 10.1080/1064119X.2019.1632996
    Hance J J. 2003. Submarine slope stability[D]. Austin: University of Texas at Austin.
    He J, Liang Q Y, Ma Y, et al. 2018. Geohazards types and their distribution characteristics in the natural gas hydrate area on on the northern slope of the South China Sea[J]. Geology in China, 45 (1): 15-28. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201801003.htm
    He Y, Zhong G F, Wang L L, et al. 2014. Characteristics and occurrence of submarine canyon-associated landslides in the middle of the northern continental slope, South China Sea[J]. Marine and Petroleum Geology, 57 : 546-560. doi: 10.1016/j.marpetgeo.2014.07.003
    Huo Y D, Nian T K, Jiao H B, et al. 2019. Seismic stability of submarine clay slopes based on upper bound approach[J]. Journal of Engineering Geology, 27 (2): 408-414. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201902022.htm
    Lall D, Vishal V, Lall M V, et al. 2022. The role of heterogeneity in gas production and the propagation of the dissociation front using thermal stimulation, and huff and puff in gas hydrate reservoirs[J]. Journal of Petroleum Science and Engineering, 208: 109320. doi: 10.1016/j.petrol.2021.109320
    Lei Y N, Wang G J, Wu S G. 2018. Preliminary research on characteristics, distribution patterns and origins of submarine slides in deepwater oil and gas exploration area of Baiyun Sag[J]. Marine Geology & Quaternary Geology, 38 (2): 106-114. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ201802011.htm
    Li G, Moridis G J, Zhang K N, et al. 2011. The use of huff and puff method in a single horizontal well in gas production from marine gas hydrate deposits in the Shenhu Area of South China Sea[J]. Journal of Petroleum Science and Engineering, 77 (1): 49-68. doi: 10.1016/j.petrol.2011.02.009
    Li L, Lei X H, Zhang X, et al. 2013. Gas hydrate and associated free gas in the Dongsha Area of northern South China Sea[J]. Marine and Petroleum Geology, 39 (1): 92-101. doi: 10.1016/j.marpetgeo.2012.09.007
    Li W, Wu S G, Wang X J, et al. 2014. Baiyun Slide and its relation to rluid migration in the northern slope of Southern China Sea[C]//Krastel S, et al. Submarine Mass Movements and Their Consequences. Advances in Natural and Technological Harzards Research, 37: 105-115.
    Li X S, Wang Y, Li G, et al. 2011. Experimental investigation into methane hydrate decomposition during three-dimensional thermal huff and puff[J]. Energy & Fuels, 25 : 1650-1658. http://www.onacademic.com/detail/journal_1000036712656810_591e.html
    Liu F, Tan L, Crosta G, et al. 2020. Spatiotemporal destabilization modes of upper continental slopes undergoing hydrate dissociation[J]. Engineering Geology, 264: 105286. doi: 10.1016/j.enggeo.2019.105286
    Ma Y, Li S Z, Liang J Q, et al. 2012. Characteristics and mechanism of submarine landslides in the Qiongdongnan Basin, northern South China Sea[J]. Journal of Jinlin University(Earth Science Edition), 42 (S3): 196-205. http://www.researchgate.net/publication/287910409_Characteristics_and_mechanism_of_submarine_landslides_in_the_Qiongdongnan_Basin_Northern_South_China_Sea
    Moridis G J, Pruess K. 2014. User's manual of the TOUGH+CORE code v1.5: A general-purpose simulator of non-isothermal flow and transport through porous and fractured media[R]. Berkeley, America: Lawrence Berkeley National Laboratory.
    Moridis G J, Queiruga A F, Reagan M T. 2018. Geomechanical stability and overall system behavior of sloping oceanic accumulations of hydrates responding to dissociation stimuli[C]//Kuala Lumpur, Malaysia: Offshore Technology Conference Asia.
    Moridis G J, Seol Y, Kneafsey T J. 2005. Studies of reaction kinetics of methane hydrate dissocation in porous media[R]. Berkeley, America: Lawrence Berkeley National Laboratory.
    Moridis G J. 2014. User's manual for the HYDRATE v1.5 option of TOUGH+v1.5: A code for the simulation of system behavior in hydrate-bearing geologic media[R]. Berkeley, America: Lawrence Berkeley National Laboratory.
    Moscardelli L, Wood L. 2008. New classification system for mass transport complexes in offshore Trinidad[J]. Basin Research, 20 (1): 73-98. doi: 10.1111/j.1365-2117.2007.00340.x
    Nian T K, Guo X S, Zheng D F, et al. 2019. Susceptibility assessment of regional submarine landslides triggered by seismic actions[J]. Applied Ocean Research, 93: 101964. doi: 10.1016/j.apor.2019.101964
    Nian T K, Song X L, Zhao W, et al. 2020. Submarine slope failure due to overpressure fluid associated with gas hydrate dissociation[J/OL]. Environmental Geotechnics, https://doi.org/10.1680/jenge.19.00070
    Song B J, Cheng Y F, Yan C L, et al. 2019. Seafloor subsidence response and submarine slope stability evaluation in response to hydrate dissociation[J]. Journal of Natural Gas Science and Engineering, 65 : 197-211. doi: 10.1016/j.jngse.2019.02.009
    Su P B, Liang J Q, Zhang W, et al. 2020. Natureal gas hydrate accumulation system in the Shenhu sea area of the northern South China Sea[J]. Natural Gas Industry, 40 (8): 77-89.
    Sun Q L, Alves T, Xie X N, et al. 2017. Free gas accumulations in basal shear zones of mass-transport deposits(Pearl River Mouth Basin, South China Sea): An important geohazard on continental slope basins[J]. Marine and Petroleum Geology, 81 : 17-32. doi: 10.1016/j.marpetgeo.2016.12.029
    Sun Q L, Leslie S. 2020. Tsunamigenic potential of an incipient submarine slope failure in the northern South China Sea[J]. Marine and Petroleum Geology, 112: 104111. doi: 10.1016/j.marpetgeo.2019.104111
    Sun Y B, Wu S G, Wang Z J, et al. 2008. The geometry and deformation characteristics of Baiyun submarine landslide[J]. Marine Geology & Quaternary Geology, 28 (6): 69-77. http://www.researchgate.net/publication/281468040_The_geometry_and_deformation_characteristics_of_Baiyun_Submarine_Landslide
    Tan L, Liu F, Huang Y, et al. 2021. Production-induced instability of a gentle submarine slope: Potential impact of gas hydrate exploitation with the huff-puff method[J]. Engineering Geology, 289: 106174. doi: 10.1016/j.enggeo.2021.106174
    Tan L, Liu F. 2020. Submarine slope stability during depressurization and thermal stimulation hydrate production with horizontal wells[J]. Chinese Journal of Theoretical and Applied Mechanics, 52 (2): 567-577.
    Wan L, Yu X H, Steve T, et al. 2016. Submarine landslides, relationship with BSRs in the Dongsha area of South China Sea[J]. Petroleum Research, 1 : 59-69. doi: 10.1016/S2096-2495(17)30031-5
    Wang W W, Wang D W, Wu S G, et al. 2018. Submarine landslides on the north continental slope of the South China Sea[J]. Journal of Ocean University of China, 17 : 83-100. doi: 10.1007/s11802-018-3491-0
    Wu X M, Liang Q Y, Ma Y, et al. 2018. Submarine landslides and their distribution in the gas hydrate area on the North slope of the South China Sea[J]. Energies, 11: 3481. doi: 10.3390/en11123481
    Yang S X, Lei Y, Liang J Q, et al. 2017. Concentrated gas hydrate in the Shenhu Area, South China Sea: Results from drilling expeditions GMGS3 & GMGS4[C]//Proceedings of 9th International Conference on Gas Hydrates.
    Yin S R, Wang L L, Guo Y Q, et al. 2015. Morphology, sedimentary characteristics, and origin of the Dongsha submarine canyon in the northeastern continental slope of the South China Sea[J]. Science China Earth Sciences, 58 : 971-985. doi: 10.1007/s11430-014-5044-8
    Yoneda J, Oshima M, Kida M, et al. 2019. Permeability variation and anisotropy of gas hydrate-bearing pressure-core sediments recovered from the Krishna-Godavari Basin, offshore India[J]. Marine and Petroleum Geology, 108 : 524-536. doi: 10.1016/j.marpetgeo.2018.07.006
    Zhang X H, Lu X B, Chen X D, et al. 2016. Mechanism of soil stratum instability induced by hydrate dissociation[J]. Ocean Engineering, 122 : 74-83. doi: 10.1016/j.oceaneng.2016.06.015
    Zhou Q J. 2015. Identification of submarine landslides and characteristics analysis in the Baiyun sag of the South China Sea northern slope[D]. Shandong: The First Institute of Oceanography.
    Zhu C Q, Jia Y G, Liu X L, et al. 2015. Classification and genetic machanism of submarine landslide: A review[J]. Marine Geology & Quaternary Geology, 35 (6): 153-163. http://www.researchgate.net/publication/287948956_Classification_and_Genetic_Mechanism_of_Submarine_Landslide_A_Review
    何健, 梁前勇, 马云, 等. 2018. 南海北部陆坡天然气水合物区地质灾害类型及其分布特征[J]. 中国地质, 45 (1): 15-28. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201801003.htm
    霍沿东, 年廷凯, 焦厚滨, 等. 2019. 基于极限分析上限方法的海底斜坡地震稳定性[J]. 工程地质学报, 27 (2): 408-414. doi: 10.13544/j.cnki.jeg.2017-621
    雷亚妮, 王广建, 吴时国. 2018. 白云凹陷深水油气开发区海底滑坡的特征、分布以及成因初探[J]. 海洋地质与第四纪地质, 38 (2): 106-114. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201802011.htm
    马云, 李三忠, 梁金强, 等. 2012. 南海北部琼东南盆地海底滑坡特征及其成因机制[J]. 吉林大学学报(地球科学版), 42 (S3): 196-205. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ2012S3021.htm
    苏丕波, 梁金强, 张伟, 等. 2020. 南海北部神狐海域天然气水合物成藏系统[J]. 天然气工业, 40 : 77-89. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201803022.htm
    孙运宝, 吴时国, 王志君, 等. 2008. 南海北部白云大型海底滑坡的几何形态与变形特征[J]. 海洋地质与第四纪地质, 28 : 69-77. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200806012.htm
    谭琳, 刘芳. 2020. 水平井降压法和热激法水合物开采对海底边坡稳定性的影响[J]. 力学学报, 52 (2): 567-577. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202002025.htm
    周庆杰. 2015. 南海北部陆坡白云凹陷区海底滑坡的识别与特征分析[D]. 山东: 国家海洋局第一海洋研究所.
    朱超祁, 贾永刚, 刘晓磊, 等. 2015. 海底滑坡分类及成因机制研究进展[J]. 海洋地质与第四纪地质, 35 (6): 153-163. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201506023.htm
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article views (107) PDF downloads(31) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint