Volume 29 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
Zhang Hao, Rong Ze, Nian Tingkai, et al. 2021. Study on submarine slope stability of Caofeidian Port considering wave and seismic dynamic effects [J].Journal of Engineering Geology, 29(6): 1796-1804. doi: 10.13544/j.cnki.jeg.2021-0717
Citation: Zhang Hao, Rong Ze, Nian Tingkai, et al. 2021. Study on submarine slope stability of Caofeidian Port considering wave and seismic dynamic effects [J].Journal of Engineering Geology, 29(6): 1796-1804. doi: 10.13544/j.cnki.jeg.2021-0717

STUDY ON SUBMARINE SLOPE STABILITY OF CAOFEIDIAN PORT CONSIDERING WAVE AND SEISMIC DYNAMIC EFFECTS

doi: 10.13544/j.cnki.jeg.2021-0717
Funds:

the National Natural Science Foundation of China 51879036

the National Natural Science Foundation of China 52079020

Liaoning Revitalization Talents Program XLYC2002036

  • Received Date: 2021-10-31
  • Rev Recd Date: 2021-11-20
  • Available Online: 2022-01-06
  • Publish Date: 2021-12-25
  • Dynamic loads such as waves and earthquakes can easily cause submarine slope instability,and further lead to the occurrence of submarine landslides,endangering the safety of ports,docks and marine engineering constructions. In this study,the submarine slope in the deep trough of south Caofeidian Port is investigated. To quantitatively calculate the stability of the submarine slope,the finite element method combined with the limit equilibrium method is used considering the effects of real wave loads and seismic loads. The mechanism of dynamic effects on the stability of submarine slopes under special circumstances is also investigated. The results show that extreme wave loads and seismic dynamic loads play an important role in the stability assessment of submarine slopes. Wave loads with a recurrence interval of 50 years and seismic dynamic loads with a peak acceleration of 0.15g can lead to the instability of submarine slopes. Seismic loads can produce larger permanent displacements on submarine slopes. In addition,the erosion and weakening of the rock and soil strength induced by dynamic effects can further reduce the safety factor of the slope under various working conditions,which cannot be ignored in stability analysis of submarine slopes.
  • loading
  • Cao J F,Jin X J,Li J G,et al. 2013. Submarine slope stability evaluation based on strength reduction finite element method[J]. Applied Mechanics and Materials, 1325-1329. http://www.onacademic.com/detail/journal_1000037604882410_c820.html
    Chu H X, Fang Z H, Shi H J, et al. 2016. Analysis and evaluation on the slope stability of Caofeidian deep trough[J]. The Ocean Engineering, 34 (3): 114-122. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYGC201603013.htm
    Chu H X, Fang Z H, Shi H J, et al. 2017. Application of Newmark displacement analysis to seismic stability evaluation of submarine slope[J]. Marine Geological Frontiers, 33 (6): 53-58. http://en.cnki.com.cn/Article_en/CJFDTotal-HYDT201706008.htm
    Fang Z H, Chu H X. 2015. Analysis of slope stability under wave action in Caofeidian deep groove[J]. Marine Geological Frontiers, 31 (11): 29-35. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDT201511006.htm
    Fang Z H. 2014. Study on geological disaster research and stability analysis of Caofeidian deep groove[D]. Qingdao: Ocean University of China.
    Jin X J. 2013. The stability evaluation of the typical Canyon area in South China Sea based on the strength reduction finite element method[D]. Qingdao: Qingdao University of Technology.
    Kramer S L. 1996. Geotechnical earthquake engineering[M]. Upper Saddle River, New Jersey: Prentice Hall.
    Lacasse S, Nadim F, Vanneste M, et al. 2013. Case studies of offshore slope stability[C]//Geo-Congress. San Diego, CA (US): ASCE: 2379-2418.
    Lee H, Locat J, Dartnell P, et al. 1999. Regional variability of slope stability: application to the Eel margin, California[J]. Marine Geology, 154(1-4): 305-321. doi: 10.1016/S0025-3227(98)00120-0
    Li L L, Wang D W, Zhang C, et al. 2020. Comparative study on potential landslide and tsunami disasters in several typical landslide areas in the South China Sea[R]. Chongqing: Annual Meeting of Chinese Geoscience Union.
    Liu B, Nian T K, Liu M, et al. 2016. Stability of seafloor slopes based on upper bound approach of limit analysis[J]. Haiyang Xuebao, 38 (7): 135-143. http://d.wanfangdata.com.cn/periodical/hyxb201607013
    Liu M, Liu B, Nian T K, et al. 2015. Numerical analysis of the failure mechanism of submarine slope under linear wave loading[J]. China Earthquake Engineering Journal, 37 (2): 415-421. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZBDZ201502022.htm
    Nian T K, Liu M, Liu B, et al. 2016. Stability analysis of clayey sloping seabed under extreme wave loads[J]. The Ocean Engineering, 34 (4): 9-15. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYGC201604002.htm
    Rodriguez-Ochoa R, Nadim F, Hicks M A. 2015. Influence of weak layers on seismic stability of submarine slopes[J]. Marine and Petroleum Geology, 65: 247-268. doi: 10.1016/j.marpetgeo.2015.04.007
    Si S W, Wang D W, He H Z, et al. 2021. Seabed instability investigation and assessment procedures[J]. Marine Geology Frontiers, 37 (2): 21-30.
    Sun Y F, Dong L F, Pu G J, et al. 2006. Stability analysis of slopes in the subaqueous delta of the Yellow River under storm wave loading[J]. Journal of Engineering Geology, 14 (5): 582-587. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ200605001.htm
    Urgeles R, Locat J, Lee H J, et al. 2002. The Saguenay Fjord, Quebec, Canada: Integrating marine geotechnical and geophysical data for spatial seismic slope stability and hazard assessment[J]. Marine Geology, 185 (3): 319-340.
    Wang Y, Ke X K, Jia Y L, et al. 1999. Study on the coastal profile changes of the Caofeidian area in the Bohai Sea since 1980s[J]. Marine Science Bulletin, 18 (1): 43-51. http://d.wanfangdata.com.cn/Periodical/hytb199901006
    Xiu Z X, Liu L J, Li X S, et al. 2016. Slope stability analysis of submarine canyon area along pipeline route of Liwan3-1 gasfield[J]. Journal of Engineering Geology, 24 (4): 535-541. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201604008.htm
    Zhang L, Luan X W. 2012. Quantitative analysis of submarine slopes stability on the northern slope of the South China Sea[J]. Progress in Geophysics, 27 (4): 1443-1453. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ201204020.htm
    Zhang N, Zhao X F, Han Z Y, et al. 2020. Research on the change of flow field before and after the opening of the Nachao River in Caofeidian port area of Tangshan[J]. Journal of Waterway and Harbor, 41 (1): 29-36.
    Zhang W, Chen Z H, Huang J N, et al. 2005. Stability analysis of seabed by shore in Xiamen[J]. Journal of Water Resources and Architectural Engineering, 3 (1): 45-48. http://en.cnki.com.cn/Article_en/CJFDTOTAL-FSJS200501012.htm
    Zheng D, Nian T, Liu B, et al. 2019. Investigation of the stability of submarine sensitive clay slopes underwave-induced pressure[J]. Marine Georesources & Geotechnology, 37 (1): 116-127. http://www.onacademic.com/detail/journal_1000040884051410_9bfc.html
    褚宏宪, 方中华, 史慧杰, 等. 2016. 曹妃甸海底深槽斜坡稳定性分析与评价[J]. 海洋工程, 34 (3): 114-122. https://www.cnki.com.cn/Article/CJFDTOTAL-HYGC201603013.htm
    褚宏宪, 方中华, 史慧杰, 等. 2017. Newmark位移分析方法在海底斜坡地震稳定性评价中的应用[J]. 海洋地质前沿, 33 (6): 53-58. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201706008.htm
    方中华, 褚宏宪. 2015. 波浪作用下曹妃甸深槽斜坡的稳定性[J]. 海洋地质前沿, 31 (11): 29-35. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201511006.htm
    方中华. 2014. 曹妃甸甸头深槽灾害地质因素研究及稳定性分析[D]. 青岛: 中国海洋大学.
    金晓杰. 2013. 基于有限元强度折减法的南海某典型峡谷区斜坡稳定性评价[D]. 青岛: 青岛理工大学.
    李琳琳, 王大伟, 章程, 等. 2020. 南海域内几个典型滑坡区的潜在滑坡海啸灾害对比研究[R]. 重庆: 2020年中国地球科学联合学术年会.
    刘博, 年廷凯, 刘敏, 等. 2016. 基于极限分析上限方法的海底斜坡稳定性评价[J]. 海洋学报, 38 (7): 135-143. doi: 10.3969/j.issn.0253-4193.2016.07.013
    刘敏, 刘博, 年廷凯, 等. 2015. 线性波浪加载下海底斜坡失稳机制的数值分析[J]. 地震工程学报, 37 (2): 415-421. doi: 10.3969/j.issn.1000-0844.2015.02.0415
    年廷凯, 刘敏, 刘博, 等. 2016. 极端波浪条件下黏土质斜坡海床稳定性解析[J]. 海洋工程, 34 (4): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-HYGC201604002.htm
    司少文, 王大伟, 贺惠忠, 等. 2021. 海底失稳调查与评价流程[J]. 海洋地质前沿, 37 (2): 21-30. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT202102003.htm
    孙永福, 董立峰, 蒲高军, 等. 2006. 风暴潮作用下黄河水下三角洲斜坡稳定性研究[J]. 工程地质学报, 14 (5): 582-587. doi: 10.3969/j.issn.1004-9665.2006.05.002
    王艳, 柯贤坤, 贾玉连, 等. 1999. 渤海湾曹妃甸80年代以来海岸剖面变化研究[J]. 海洋通报, 18 (1): 43-51. doi: 10.3969/j.issn.1001-6392.1999.01.006
    修宗祥, 刘乐军, 李西双, 等. 2016. 荔湾3-1气田管线路由海底峡谷段斜坡稳定性分析[J]. 工程地质学报, 24 (4): 535-541. doi: 10.13544/j.cnki.jeg.2016.04.007
    张亮, 栾锡武. 2012. 南海北部陆坡稳定性定量分析[J]. 地球物理学进展, 27 (4): 1443-1453. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201204020.htm
    张娜, 赵雪夫, 韩志远, 等. 2020. 唐山港曹妃甸港区纳潮河开通对流场影响研究[J]. 水道港口, 41 (1): 29-36. doi: 10.3969/j.issn.1005-8443.2020.01.005
    张伟, 陈正汉, 黄建南, 等. 2005. 厦门近岸海床稳定分析[J]. 水利与建筑工程学报, 3 (1): 45-48. doi: 10.3969/j.issn.1672-1144.2005.01.012
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article views (134) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint