Volume 29 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
Chen Yumin, Chen Runze, Zhang Kunxian, et al. 2021. Shaking table tests to investigate the deformation characteristics of water pipelines in marine liquefied foundations[J].Journal of Engineering Geology, 29(6): 1869-1877. doi: 10.13544/j.cnki.jeg.2021-0721
Citation: Chen Yumin, Chen Runze, Zhang Kunxian, et al. 2021. Shaking table tests to investigate the deformation characteristics of water pipelines in marine liquefied foundations[J].Journal of Engineering Geology, 29(6): 1869-1877. doi: 10.13544/j.cnki.jeg.2021-0721

SHAKING TABLE TESTS TO INVESTIGATE THE DEFORMATION CHARAC-TERISTICS OF WATER PIPELINES IN MARINE LIQUEFIED FOUNDATIONS

doi: 10.13544/j.cnki.jeg.2021-0721
Funds:

  • Received Date: 2021-11-02
  • Rev Recd Date: 2021-12-13
  • Available Online: 2022-01-06
  • Publish Date: 2021-12-25
  • Buried pipelines are widely used, and the extensive liquefiable soil layers will lead to the problem of pipeline uplift and deformation damage during earthquakes. Based on the buried pipeline project, we analyzed the deformation characteristics and dynamic response of pipes in marine liquefied foundations, and investigated the anti-liquefaction effect of gravel layers and drainage panels. The main conclusions are as follows: the marine saturated sand foundation liquefies under the dynamic load, and the acceleration decay decreases with increasing depth. The excess pore pressure in different depth rises rapidly to the peak and remains stable until the vibration stops. During the vibration, the pipe floats significantly and the floating rate decreases gradually. The gravel layer method is not effective in anti-liquefaction of the pipe, and the acceleration and excess pore pressure are basically consistent with the standard working condition. The effect of wide or narrow drainage panels method are more significant, and the liquefaction phenomenon of the overall soil layer is suppressed. The peak excess pore pressure is smaller compared with the standard working condition, and the average peak value is reduced by 48.30% and 38.91%, respectively, while the vertical displacement of the pipe decreases by more than 100% compared with the standard working condition. In practical engineering applications, it is recommended to use the drainage panels to reduce the risk of foundation liquefaction, while the appropriate drainage panels width needs to be selected.
  • loading
  • Bai X, Tang X W, Hu J L. 2019. Numerical analysis of anti-liqefaction uplift of a shallow buried subway station in improved counter-measures[J]. Journal of Disaster Prevention and Mitigation Engineering, 39 (5): 778-786, 878. http://en.cnki.com.cn/Article_en/CJFDTotal-DZXK201905012.htm
    Chen Y M, Liu H L, Zhao N. 2010. Laboratory test on anti-liquefaction characteristics of rigidity-drain pile[J]. China Civil Engineering Journal, 43 (12): 114-119. http://www.cnki.com.cn/Article/CJFDTotal-TMGC201012016.htm
    Hu J L, Liu H B. 2017. Numerical experiment of liquefaction-induced uplift response of metro station by improved gravelly soil method[J]. Tunnel Construction, 37 (S2): 82-86. http://en.cnki.com.cn/Article_en/CJFDTotal-JSSD2017S2012.htm
    Huang Y, Yu M, Bhattacharya S. 2013. Review on liquefaction-induced damages of soils and foundations during 2011 of the Pacific Coast of Tohoku Earthquake(Japan)[J]. Chinese Journal of Geotechnical Engineering, 35 (5): 834-840. http://d.wanfangdata.com.cn/periodical/ytgcxb201305005
    Kong X J, Zhou D G. 2007. Study on the uplift behavior of pipelines based on post-liquefaction deformation method[J]. Chinese Journal of Geotechnical Engineering, 29 (8): 1199-1204. http://www.researchgate.net/publication/288657376_Study_on_uplift_behavior_of_pipelines_based_on_post-liquefaction_deformation_method
    Koseki J, Matsuo O, Koga Y. 1997. Uplift behavior of underground structures caused by liquefaction of surrounding soil during earthquake[J]. Soils & Foundations, 37 (1): 97-108. http://www.sciencedirect.com/science/article/pii/S0038080620312245
    Krishnaswamy N R, Isaac N T. 1994. Liquefaction potential of reinforced sand[J]. Geotextiles and Geomembranes, 13 (1): 23-41. doi: 10.1016/0266-1144(94)90055-8
    Krishnaswamy N R, Thomas Isaac N. 1995. Liquefaction analysis of saturated reinforced granular soils[J]. Journal of Geotechnical Engineering, 121 (9): 645-651. doi: 10.1061/(ASCE)0733-9410(1995)121:9(645)
    Li C S, Song J, Shi J S. 2003. Model test of underground pipeline anti-liquefaction measures in 2003[J]. Oil and Gas Storage and Transportation, 22 (7): 23-26.
    Maheshwari B K, Singh H P, Saran S. 2012. Effects of reinforcement on liquefaction resistance of Solani sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 138 (7): 831-840. doi: 10.1061/(ASCE)GT.1943-5606.0000645
    Shuai J, Wang X L, Ye Y X, et al. 2009. Stress analysis of pipeline subject to surface load[J]. Journal of China University of Petroleum(Natural Science Edition), 33 (2): 99-103. http://www.researchgate.net/publication/290297169_Stress_analysis_of_pipeline_subject_to_surface_load
    Sun S P, Han Y. 2003. State-of-the-art of the research on lifeline earthquake engineering[J]. China Civil Engineering Journal, 36 (5): 97-98. http://www.cnki.com.cn/Article/CJFDTotal-TMGC200305016.htm
    Towhata I, Vargas-Monge W, Orense R P, et al. 1999. Shaking table tests on subgrade reaction of pipe embedded in sandy liquefied sub-soil[J]. Soil Dynamics and Earthquake Engineering, 18 (5): 347-361. doi: 10.1016/S0267-7261(99)00008-1
    Wu J, Zhou Z F, Li M W, et al. 2019. Advance on the methods for predicting water inflow into tunnels[J]. Journal of Engineering Geology, 27 (4): 890-902. http://www.researchgate.net/publication/340778795_Advance_on_the_methods_for_predicting_water_inflow_into_tunnels/download
    Yang D, Guo E D, Wang X J. 2010. Functional failure mode of the Wenchuan earthquake water supply system[J]. Journal of Catastro-phology, 25(1): 350.
    Zhan Z F, Qi S W, He N W, et al. 2019. Shaking table test study of homogeneous rock slope model under strong earthquake[J]. Journal of Engineering Geology, 27 (5): 946-954. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201905002.htm
    Zhang X L. 2009. Numerical analysis of dynamic response of submarine pipeline and seabed under seismic loading[D]. Dalian: Dalian University of Technology.
    Zhang X W, Zhu W D, Li H, et al. 2020. Study on uplift behavior and anti-liquefaction measures for subway station during seismic loadings[J]. World Earthquake Engineering, 36 (1): 205-211.
    Zheng G, Gong X N, Xie Y L, et al. 2012. State-of-the-art techniques for ground improvement in China[J]. China Civil Engineering Journal, 45 (2): 127-146. http://en.cnki.com.cn/Article_en/CJFDTOTAL-TMGC201202020.htm
    Zhou J, Li X, Ma H C, et al. 2003. Experimental study on dynamic characteristics of free spanning submarine pipelines due to earthquake[J]. Journal of Hydraulic Engineering, 34 (1): 12-16. http://en.cnki.com.cn/Article_en/CJFDTotal-SLXB200301002.htm
    Zhu D M, Foong S Y, Li Y A. 2020. Experimental study and numerical simulation of a horizontal ground heat exchanger under pavement[J]. Journal of Engineering Geology, 28 (5): 1084-1090.
    Zhu H H, Wang D Y, Wang B J, et al. 2020. Experimental study on pipe-soil interaction using fiber optic sensing and digital image analysis[J]. Journal of Engineering Geology, 28 (2): 317-326.
    Zou D G, Kong X J, Ling H L, et al. 2002. Experimental study on the uplift behavior of pipeline in saturated sand foundation and earthquake resistant measures during an earthquake[J]. Chinese Journal of Geotechnical Engineering, 24 (3): 323-326. http://d.wanfangdata.com.cn/Periodical/ytgcxb200206030
    Zou D G, Kong X J. 2010. Numerical analysis of mitigation methods against pipeline up-lifting in liquefiable soil[J]. Journal of Dalian University of Technology, 50 (3): 379-385. http://www.cqvip.com/QK/90724X/20103/33938189.html
    Zou D G. 2008. Study on uplifting mechanism and mitigation measure-ment of the pipelines buried at shallow depth during the earth-quake[D]. Dalian: Dalian University of Technology.
    白旭, 唐小微, 胡记磊. 2019. 浅埋地铁车站的抗液化上浮改进措施数值分析[J]. 防灾减灾工程学报, 39 (5): 778-786, 878. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201905012.htm
    陈育民, 刘汉龙, 赵楠. 2010. 抗液化刚性排水桩振动台试验的数值模拟研究[J]. 土木工程学报, 43 (12): 114-119. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201012016.htm
    胡记磊, 刘华北. 2017. 改进碎石排水措施的地铁结构液化上浮响应数值试验[J]. 隧道建设(中英文), 37 (S2): 82-86. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD2017S2012.htm
    黄雨, 于淼, Bhattacharya Subhamoy. 2013.2011年日本东北地区太平洋近海地震地基液化灾害综述[J]. 岩土工程学报, 35 (5): 834-840. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201305005.htm
    孔宪京, 邹德高. 2007. 基于液化后变形分析方法的地下管线上浮反应研究[J]. 岩土工程学报, 29 (8): 1199-1204. doi: 10.3321/j.issn:1000-4548.2007.08.012
    李长升, 宋杰, 石江水. 2003. 地下管道抗液化措施模型试验[J]. 油气储运, 22 (7): 23-26. doi: 10.3969/j.issn.1000-8241-D.2003.07.007
    帅健, 王晓霖, 叶远锡, 等. 2009. 地面占压荷载作用下的管道应力分析[J]. 中国石油大学学报(自然科学版), 33 (2): 99-103. doi: 10.3321/j.issn:1673-5005.2009.02.019
    孙绍平, 韩阳. 2003. 生命线地震工程研究述评[J]. 土木工程学报, 36 (5): 97-98. doi: 10.3321/j.issn:1000-131X.2003.05.017
    吴建, 周志芳, 李鸣威, 等. 2019. 隧洞涌水量预测计算方法研究进展[J]. 工程地质学报, 27 (4): 890-902. doi: 10.13544/j.cnki.jeg.2018-245
    杨丹, 郭恩栋, 王祥建, 等. 2010. 汶川地震供水系统功能失效模式[J]. 灾害学, 25(1): 350. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU2010S1081.htm
    詹志发, 祁生文, 何乃武, 等. 2019. 强震作用下均质岩质边坡动力响应的振动台模型试验研究[J]. 工程地质学报, 27 (5): 946-954. doi: 10.13544/j.cnki.jeg.2019168
    张西文, 朱伟东, 李虎, 等. 2020. 地铁车站液化上浮响应及抗浮措施研究[J]. 世界地震工程, 36 (1): 205-211. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC202001026.htm
    张小玲. 2009. 地震作用下海底管线及周围海床动力响应分析[D]. 大连: 大连理工大学.
    郑刚, 龚晓南, 谢永利, 等. 2012. 地基处理技术发展综述[J]. 土木工程学报, 45 (2): 127-146. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201202020.htm
    周晶, 李昕, 马恒春, 等. 2003. 地震时海底悬跨管道动力特性试验研究[J]. 水利学报, 34 (1): 12-16. doi: 10.3321/j.issn:0559-9350.2003.01.003
    朱敦铭, Foong Shen Yang, 李云安. 2020. 路面下水平地埋管热响应试验与数值模拟研究[J]. 工程地质学报, 28 (5): 1084-1090. doi: 10.13544/j.cnki.jeg.2020-310
    朱鸿鹄, 王德洋, 王宝军, 等. 2020. 基于光纤传感及数字图像测试的管-土相互作用试验研究[J]. 工程地质学报, 28 (2): 317-326. doi: 10.13544/j.cnki.jeg.2020-081
    邹德高, 孔宪京, Ling H I, 等. 2002. 地震时饱和砂土地基中管线上浮机理及抗震措施试验研究[J]. 岩土工程学报, 24 (3): 323-326. doi: 10.3321/j.issn:1000-4548.2002.03.012
    邹德高, 孙宪京. 2010. 液化土中管线抗上浮排水措施数值分析[J]. 大连理工大学学报, 50 (3): 379-385. https://www.cnki.com.cn/Article/CJFDTOTAL-DLLG201003014.htm
    邹德高. 2008. 地震时浅埋地下管线上浮机理及减灾对策研究[D]. 大连: 大连理工大学.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(3)

    Article views (108) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint