Volume 21 Issue 3
Jun.  2013
Turn off MathJax
Article Contents
WANG Ruiying, WANG Qing, ZHANG Ying, XIANG Liangjun. 2013: TIME SERIES-DYNAMIC NEURAL NETWORK FORECAST ON DREDGER FILL SETTLEMENT. JOURNAL OF ENGINEERING GEOLOGY, 21(3): 351-356.
Citation: WANG Ruiying, WANG Qing, ZHANG Ying, XIANG Liangjun. 2013: TIME SERIES-DYNAMIC NEURAL NETWORK FORECAST ON DREDGER FILL SETTLEMENT. JOURNAL OF ENGINEERING GEOLOGY, 21(3): 351-356.

TIME SERIES-DYNAMIC NEURAL NETWORK FORECAST ON DREDGER FILL SETTLEMENT

Funds:

  • Received Date: 2012-10-20
  • Rev Recd Date: 2013-03-01
  • Publish Date: 2013-06-25
  • Reclamation through technology of dredger fill can relieve the problem of short earth resources effectively. So it is urgent to improve this technology. Dredger fill has a high content of clay, organic and moisture, high compressibility and low strength, which cause the characteristic of low consolidation efficiency and slow settling velocity for the reclaimed land. For most of the projects, long-term settlement observation has been omitted due to the big requirement of resources. It usually takes 2-3 years to form the hard mantle layer on the surface of dredger fill. Such duration is too long. The effect is not ideal. Furthermore, there is a big difference between the actual settlement after construction and the expected one. In order to satisfy the deformation requirements, the problems of the prediction of long-term settlement based on the observation data of short-term settlement have to be addressed. In addition, the method that can be taken based on the long-term settlement prediction needs to be solved. The time series-dynamic neural network is established through self programming in this article. This method is applied in the prediction of long-term settlement and the analysis of results in Dredger Fill. The results show that the method of dynamic neural network can be reasonably applied to the prediction of soft soil consolidation settlement with minor error and better feasibility. The prediction has high precision and stability.
  • loading
  • [1] 牛岑岑, 王清,苑小青,等.渗流作用下吹填土微观结构特征定量化研究[J].吉林大学学报(地球科学版), 2011, 41 (4): 1104~1109.

    Niu Cencen, Wang Qing, Yuan Xiaoqing, et al. Quantitative research on microstructure features of dredger fill under seepage flow. Journal of Jilin University(Earth Science Edition), 2011, 41 (4): 1104~1109.

    [2] 于先文, 胡伍生,王继刚.神经网络在建筑物沉降分析中的应用[J].测绘工程, 2004, 13 (4): 48~50.

    Yu Xianwen, Hu Wusheng, Wang Jigang. Application of neural networks to the analisis of building sedimentation. Engineering of Surveying and Mapping, 2004, 13 (4): 48~50.

    [3] 陈述存, 高正夏.基于改进BP算法的Elman网络在软基沉降预测中的应用[J].工程地质学报, 2006, 14 (3): 394~397.

    Chen Shucun, Gao Zhengxia. Application of a refined Bp algorithm based Elman network to settlement prediction of soft soil ground. Journal of Engineering Geology, 2006, 14 (3): 394~397.

    [4] 赵明华, 郑焕然,刘煜.滨海软土路基最终沉降量预测研究[J].广西交通科技, 2003, 28 (5): 13~19.

    Zhao Minghua, Zheng Huanran, LiuYu. Final settlement forecast of roadbed by offshore soft clay. Guangxi Communication Science & Technology, 2003, 28 (5): 13~19.

    [5] 袁仁茂, 马凤山,邓海清,等.基于Elman型神经网络的金川二矿地表岩移时序预测模型[J].工程地质学报, 2008, 16 (1): 116~123.

    Yuan Renmao, Ma Fengshan, Deng Haiqing,et al. Elman neural network based time-series forecasting model for ground surface movement on NO.2 nickel mine area in Jinchuan. Journal of Engineering Geology, 2008, 16 (1): 116~123.

    [6] 桑伟锋. 真空预压加固吹填土的室内模拟试验研究.长春: 吉林大学, 2011.

    Sang Weifeng. Research on Laboratory Simulation Experiment of Firming Dredger Fill by Vacuum Preloading Method. Changchun: Jilin University, 2011.

    [7] 刘沐宇, 池秀文,魏文辉,等.时间序列分析法与边坡位移预报[J].武汉工业大学学报, 1995, 17 (3): 46~49.

    Liu Muyu, Chi Xiuwen, Wei Wenhui, et al. Time series analysis method and its application to the prediction of slope displacement. Journal of Wuhan University of Technology, 1995, 17 (3): 46~49.

    [8] 白斌飞. 基于神经网络理论的线性时间序列预测研究 [D].成都: 西南交通大学, 2005.

    Bai Binfei. Study on linear Time-Series Forecasting Based on Neural Networks Theory. Chengdu: Southwest Jiaotong, 2005.

    [9] 王晶晶. 消费价格指数的时间序列分析[J].时代经贸, 2007, 8 (5):31~32.

    Wang Jingjing. Time series analysis of consumer price index. Economic and Trade Update, 2007, 8 (5):31~32.

    [10] 黄修云, 曹国安,张清.人工神经元网络在地下工程预测中的应用[J].北方交通大学学报, 1998, 22 (1): 39~43.

    Huang Xiuyun, Cao Guo'an, Zhang Qing. Application of artificial neural net in underground engineering prediction. Journal of Northern Jiaotong University, 1998, 22 (1): 39~43.

    [11] 李青. 一类非平稳经济序列预测模型的研究[D].乌鲁木齐: 新疆大学, 2007.

    Li Qing. Study on an Non-Steady Economic Series Forecast Model. Vrümqi: Xinjiang University, 2007.

    [12] 任芳. 基于MATLAB和BP网络的公路软基沉降量预测模型[J].福建工程学报, 2011, 9 (4): 330~333.

    Ren Fang. Prediction model for settlement of soft ground of highway based on Matlab and back propagation(BP)artificial neural network. Journal of Fujian University of Technology, 2011, 9 (4): 330~333.

    [13] 胡静. 神经网络在股票市场预测中的应用研究 [D].济南: 山东师范大学, 2007.

    Hu Jing. The Application of Neural Network in the Stock Market Prediction. Jinan: Shandong Normal University, 2007.

    [14] 李涛, 潘云,娄华君,等.人工神经网络在天津市区地面沉降预测中的应用[J].地质通报, 2005, 24 (7): 677~681.

    Li Tao, Pan Yun, Lou Huajun, et al. Application of the artificial neural network in land subsidence prediction in the urban area of Tianjin municipality, China. Regional Geology of China, 2005, 24 (7): 677~681.

    [15] 宋克志, 王梦恕,宋克勇.边坡位移预测的神经网络模型研究[J].岩石力学与工程学报, 2003, 22 (增 1): 2382~2385.

    Song Kezhi, Wang Mengshu, Song Keqiang. Study on nnt model for slope displacements prediction. Chinese Journal of Rock Mechanics and Engineering, 2003, 22 (S1): 2382~2385.

    [16] Howard D,Mark B.Neural Network Toolbox—User’s Guide.:, 2001,153~162.

    [17] 李克钢, 张重庆.基于时间序列的神经网络建模及边坡位移预测[J].地下空间与工程学报, 2009, 5 (增1): 1418~1421.

    Li Kegang, Zhang Chongqing. Neural network modeling and slope displacement prediction based on time series. Chinese Journal of Underground Space and Engineering, 2009, 5 (S1): 1418~1421.

    [18] 杨嘉, 吴祥生,王宁,张敏琦.基于Elman型神经网络的空调负荷预测模型[J].重庆大学学报(自然科学版), 2002, 25 (8): 27~31.

    Yang Jia, Wu Xiangsheng, Zhang Jinsong, Zhang Mingqi. Fuzzy comprehensive evaluation of human thermal comfort. Journal of Chongqing University(Natural Science Edition), 2002, 25 (8): 27~31.

    [19] 李峰, 宋建军,董来启,等.基于混沌神经网络理论的城市地面沉降量预测模型[J].工程地质学报, 2008, 16 (5): 715~720.

    Li Feng, Song Jianjun, Dong Laiqi, et a.l. Chaos neural network theory based model for quantitative prediction of urban ground subsidence. Journal of Engineering Geology, 2008, 16 (5): 715~720.

    [20] 卢才金, 胡厚田,等.改进的BP网络在岩质边坡稳定性评价中的应用[J].岩石力学与工程学报, 1999, 18 (3): 303~307.

    Lu Caijin, Hu Houtian, et al. Application of improved back-propagation network in the evaluation of railway rock slope. Chinese Journal of Rock Mechanics and Engineering, 1999, 18 (3): 303~307.

    [21] 张玉祥. 岩土工程时间序列预报问题初探[J].岩石力学与工程学报, 1998, 17 (5): 552~558.

    Zhang Yuxiang. Primary research on forecasting problem of time sequence in geotechnical engineering. Chinese Journal of Rock Mechanics and Engineering, 1998, 17 (5): 552~558.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (3272) PDF downloads(1255) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint