Volume 21 Issue 4
Aug.  2013
Turn off MathJax
Article Contents
ZHANG Xitao, LIU Xiangyu, XIE Mowen, YIN Yanli. 2013: MATHEMATICAL MODEL FOR EVALUATING AFFECTED RANGE OF DEBRIS FLOW INDUCED BY ROCK LANDSLIDE. JOURNAL OF ENGINEERING GEOLOGY, 21(4): 598-606.
Citation: ZHANG Xitao, LIU Xiangyu, XIE Mowen, YIN Yanli. 2013: MATHEMATICAL MODEL FOR EVALUATING AFFECTED RANGE OF DEBRIS FLOW INDUCED BY ROCK LANDSLIDE. JOURNAL OF ENGINEERING GEOLOGY, 21(4): 598-606.

MATHEMATICAL MODEL FOR EVALUATING AFFECTED RANGE OF DEBRIS FLOW INDUCED BY ROCK LANDSLIDE

Funds:

  • Received Date: 2012-10-30
  • Rev Recd Date: 2013-04-10
  • Publish Date: 2013-08-25
  • Debris or mud flow caused by the landside is one of complicated geologic hazards in mountain area, which is usually related to geology, lithology, the mechanical characteristics of the rock and soil, rainfall, groundwater, and land usage condition. The analysis of immanent relationships between landslide and mud flow can not only afford a reference for the analysis of landslide failure mechanism, but also be used as the basis of evaluation of mud flow triggered by landslides. In this paper, the depth integral is applied two two-dimensional mathematical model of mud flow. The model is based on the principle of conservation of mass and viscous Newtonian fluid Navier-Stovkes equation. Then, this equation is numerically computed by using the finite difference method. The relational expression between streams tilt angle and the width of affected range of mud flow is obtained from statistics. It is applied to analyzing the possibility of mud flow induced by landslides which once failed under the similar geological conditions. Combining with GIS,the model can also be used to predict impacted range of mud flow by using risk map to show the zones that may be affected by the mud flow.
  • loading
  • [1] 谢谟文, 刘翔宇,等.基于三维遥感系统的泥石流土石量计算及影响范围模拟[J].水文地质工程地质, 2011,38(3): 115~119.

    Xie Mowen, Liu Xiangyu, et al. A 3-D remote sensing system based on assessment of debis flow and impact area simulation. Hydrogeology & Engineering Geology, 2011,38(3): 115~119.

    [2] 常鸣, 唐川,等.雅鲁藏布江米林段泥石流堆积扇危险范围预测模型[J].工程地质学报, 2012,20(6): 971~978.

    Chang Ming, Tang Chuan, et al.Prediction model for debris flow hazard zone on alluvial fan in milin section of Yarlungzangbo river, Tibet. Journal of Engineering Geology, 2012,20(6): 971~978.

    [3] 曾思伟, 张又安.黏性泥石流舌状沉积形态及其剖面特征[C].中国第四纪冰川冰缘学术讨论会文集[A].北京:科学出版社, 1985, 101~106.

    Zeng Siwei, Zhang Youan. Sticky mudslides lingulate sedimentary configuration and its profile features. In: Collected Works of the Symposium on Chinese Glacial and Ice Margin. Beijing: Science Press, 1985, 101~106.

    [4] 铁永波, 李宗亮.磨西河流域泥石流流域形态的非线性特征[J].工程地质学报, 2011,19(3): 376~380.

    Tie Yongbo, Li Zongliang. Nonlinear characters of debris flow evolution in Moxi river basin. Journal of Engineering Geology, 2011,19(3): 376~380.

    [5] 田连权. 滇东北蒋家沟黏性泥石流堆积地貌[J].山地研究, 1991,9(3): 185~192.

    Tian Lianquan. Accumulational landform of viscous debress flow in Jiangjia ravine, northeast Yunnan. Mountain Research, 1991,9(3): 185~192.

    [6] Cannon SH,Savage WZ.A mass-change model for the estimation of debris-flow runout[J]. Journal of Geology, 1988,96: 221~227.

    [7] Rickenmann D.Runout prediction method[A]. In: Jakob M,Hungr O.(Eds.) Debris-flow Hazard and Related Phenomena[C]. Praxis, Chichester, UK.2005, 305~324.

    [8] 池谷浩, 米尺谷,诚悦.土石流危险区の设定に关する研究(第二报)[J].土木技术资料, 970,21(9): 46~50.

    Iketani kou,komesyakutani,makotoetsu. Study on debris flow hazard area(The second report).Civil engineering technical data,970,21(9):46~50.

    [9] 高桥保. 土石流の堆积危险范围の预测[J].自然灾害科学总合ツソボツテム, 1980,17: 133~148.

    Takahashihou.The predicted range of debris flow deposits.Natural disaster science,1980,17:133~148.

    [10] 水山高久, 渡边正幸,上原信司.土石流の堆积形状[J].自然灾害科学总合ツソボツテム, 1980,17: 169~172.

    Mizuyama Takahisa,Watanabeseiyoki,ueharasinsi.Morphology of debris flow deposits.Natural Disaster Science,1980,17:169~172.

    [11] Berti M,Simoni A.Prediction of debris flow inundation areas using empirical mobility relationships[J]. Geomorphology, 2007,90: 144~161.

    [12] Huerliman M,Rickenmann D,Medina V,et al. Evaluation of approaches to calculate debris-flow parameters for hazad assessment[J]. Engineering Geology, 2008,102: 152~163.

    [13] Takahashi T,Tsujimoto H.Delineation of the debris flow hazardous zone by a numerical simulation method. Proceeding of International Symposium on Erosion, debris flow and disaster prevention. Tsukuba: Japan of Erosion Control Engineering Society, 1985, 457~462.

    [14] Takahashi T,Nakagawa H,Harada T,et al. Routing debris flows with particle segregation[J]. Journal of Hydraulic Engineering, 1992,118(11): 1490~1507.

    [15] 王纯祥, 白世伟,江崎哲郎,三谷泰浩.基于GIS泥石流二维数值模拟[J].岩土力学, 2007,28(7): 1359~1368.

    Wang Chunxiang, Bai Shiwei, Esaki Tetsuro, Mitani Yasuhiro. GIS-based two-dimensional numerical simulation of debris flow. Rock and Soil Mechanics, 2007,28(7): 1359~1368.

    [16] 王纯祥, 白世伟,江崎哲郎,等.泥石流的二维数学模型[J].岩土力学, 2007,28(6): 1237~1241.

    Wang Chunxiang, Bai Shiwei, Esaki Tetesro, et al. Two-dimensional mathematical modeling of debris flow. Rock and Soil Mechanics, 2007,28(6): 1237~1241.

    [17] 谢谟文, 蔡美峰.信息边坡工程学的理论与实践[M].北京:科学出版社, 2005.

    Xie Mowen, Cai Meifeng. The Theory and Practice of Information Slope Engineering. Beijing: Science Press, 2005.

    [18] 谢谟文, 王纯祥,等.滑坡发生地周围类似滑坡再发分析及灾害评价[J].岩石力学与工程学报, 2005,24(15): 2640~2645.

    Xie Mowen, Wang Chunxiang, et al. Landslide hazard assessment aeound a past landslide site. Chinese Journal of Rock Mechanics and Engineering, 2005,24(15): 2640~2645.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (3676) PDF downloads(744) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint