Volume 19 Issue 1
Feb.  2011
Turn off MathJax
Article Contents
NIU Wenlin, LI Tianbin, XIONG Guobin, ZHANG Guangyang. 2011: SUPPORT VECTOR MACHINES BASED INTELLIGENT ROCK MASS CLASSIFICATION METHOD. JOURNAL OF ENGINEERING GEOLOGY, 19(1): 88-92.
Citation: NIU Wenlin, LI Tianbin, XIONG Guobin, ZHANG Guangyang. 2011: SUPPORT VECTOR MACHINES BASED INTELLIGENT ROCK MASS CLASSIFICATION METHOD. JOURNAL OF ENGINEERING GEOLOGY, 19(1): 88-92.

SUPPORT VECTOR MACHINES BASED INTELLIGENT ROCK MASS CLASSIFICATION METHOD

Funds:

  • Received Date: 2010-03-01
  • Rev Recd Date: 2010-07-07
  • Publish Date: 2011-02-25
  • A new data mining method of Support Vector Machines(SVM)is applied on the classification of rock mass in tunnels.SVM is a novel powerful leaning method that based on Statistical Learning Theory.SVM can solve small-sample learning problems better than neural network. Parameters including rock layer thickness,rock mass structure,inlay condition,weathering condition,groundwater characteristic,joint condition,hammer knocking sound and ground stress,are chose as the judge factors.Data samples from Niba Mountain tunnel are used to train the SVM with different kernels. The mapping relationship between judge factors and rock mass classes is used. The SVM can discriminate and provide class-unknown data samples of rock mass. Result of the classification shows that SVM with polynomial kernel has a high accuracy when it is used to classify the rock mass.So this is an intelligent classification of rock mass method that can be applied to classify rock mass in tunnels.
  • loading
  • [1] 李天斌, 王睿.ART1神经网络在隧道围岩分类中的应用
    [J].成都理工大学学报(自然科学版),2006, 33 (5): 455~459.
    Li Tianbin,Wang Rui.The application of ART1 neural network to the classification of surrounding rocks in tunnels .Journal of Chengdu University of Technology(Science & Technology Edition),2006, 33 (5): 455~459.


    [2] 白鹏, 张喜斌,等.支持向量机理论及工程应用实例
    [M].西安: 西安电子科技大学出版社, 2008.
    Bai Peng,Zhang Xibin,et al. Support vector machines and its application in mixed gas infrared spectrum analysis.Xi'an: Xidian University Press, 2008.


    [3] Vapnik V.N.The Nature of Statistical Learning Theory,N Y: Springer Verlag, 1995.


    [4] Vapnik V.N.Statistical Learning Theory.John Wiley & Sons, Inc. , 1998.


    [5] Cristianini N,Shawe-Taylor J.An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods.Cambridge University Press, 2000.


    [6] 邓乃扬, 田英杰.数据挖掘中的新方法——支持向量机
    [M].北京: 科学出版社, 2004.
    Deng Naiyang,Tian Yingjie. A new Data Mining Method——Support Vector Mechines.Beijing: Science Press, 2004.


    [7] 苟博, 黄贤武.支持向量机多类分类方法
    [J].数据采集与处理, 2006, 21 (3): 334~339.
    Gou Bo,Huang Xianwu.SVM multi-class classification .Journal of Data Acquisition & Processing,2006, 21 (3): 334~339.


    [8] Rifkin R,Clautau A.In defense of one-vs-all classification .Journal of Machine Learning Research,2004,(5): 101~141.


    [9] 冯夏庭, 刁心宏.智能岩石力学(1)——导论
    [J].岩石力学与工程学报,1999, 18 (2): 222~226.
    Feng Xiating,Diao Xinhong.Intelligent rock mechanics(1)——Introduction .Chinese Journal of Rock Mechanics and Engineering,1999, 18 (2): 222~226.


    [10] 冯夏庭, 杨成祥.智能岩石力学(2)——参数与模型的智能辨识
    [J].岩石力学与工程学报,1999, 18 (3): 350~353.
    Feng Xiating,Yang Chengxiang.Intelligent rock mechanics(2)——Intelligent recognition of input parameters and constitutive models.Chinese Journal of Rock Mechanics and Engineering,1999, 18 (3): 350~353.


    [11] 冯夏庭. 智能岩石力学(3)——智能岩石工程
    [J].岩石力学与工程学报,1999, 18 (4): 475~478.
    Feng Xiating.Intelligent rock mechanics(3)——Intelligent rock engineering .Chinese Journal of Rock Mechanics and Engineering,1999, 18 (4): 475~478.


    [12] 中华人民共和国行业标准.公路隧道设计规范(JTG D70-2004)
    [S].北京:人民交通出版社,2004.
    Professional Standards Compilation Group of Peoples Republic of China. Code for design of road tunnel(JTG D70-2004)
    [S]. Beijing: China Communications Press,2004.

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (3480) PDF downloads(1116) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint